

The University of Nottingham
School of Computer Science and Information Technology

A Framework for the

Computer Based Assessment of

Diagram Based Coursework

by Athanasios Tsintsifas, BSc, MA

Thesis submitted to the University of Nottingham for

the degree of Doctor of Philosophy, March 2002

 To my parents…

 ii

Abstract

This research investigates the feasibility and usefulness of designing an authoring

environment for diagram-based Computer Based Assessment (CBA). CBA systems

present students with an environment that permits them to solve exercises. Upon

completion, solutions to the exercises are marked automatically, and the results, along

with instructional feedback, are returned to the students. CBA exercises are authored

by educators who gain practical and pedagogic benefits from automating the

assessment of their students. Until now, facilities to develop CBA have only been

implemented for exercises where the answers are text-based.

The deliverables described in this dissertation implement novel solutions to problems

in three areas. The first area concerns the customisation of graphic editors to the

learning material. The proposed solution is an object-oriented framework for visually

specifying and authoring diagram editors. The second area presents techniques for

describing the marking criteria of exercises. The proposed solution is a generic

marking system designed to support the development of pluggable marking tools for

the numerous and inherently different types of diagram domains. The third area is

concerned with the integration of the two previous designs with the functions of a

CBA system. For this reason provisions were made in the design and implementation

of the CourseMaster CBA system. CourseMaster was implemented to improve and

replace the Ceilidh CBA system. Ceilidh has been successfully used throughout

academia for the assessment of coursework in computer programming.

Evaluation results on diagram-based domains, such as circuit design and software

design, indicate that the automation of the assessment of diagrams can be as effective

and useful as that of programs. CourseMaster has been available within academia

since 1999, providing support for the marking of programming coursework. The

diagram authoring extension, entitled DATsys, was integrated into CourseMaster in

May 2000. Together they provide a novel and realistic foundation towards authoring,

running, and administering diagram-based CBA.

 iii

Acknowledgements

It is hard in only a few paragraphs to acknowledge everybody that helped me to

produce this work. I attempt my best and apologise dearly for those whom I omit.

Foremost, I would like to thank Eric Foxley, the father of the Ceilidh system and the

founder of the Learning Technology Group. Eric has been my former supervisor in

the initial years of this research. My sincere gratitude goes to my latter supervisor,

Colin Higgins that took under his wings the LTR group from Eric’s hands and proved

to be a more than worthy successor. The rest of the members of the LTR group, have

been very helpful in providing new ideas and support through the years. Cleveland

Gibbon gave inspiration and advice when I needed it the most. Pavlos Symeonidis

helped in both my work and life and I’m highly indebt for his friendship. Also, I

thank Ivan Vaghi and Martin Maya for their input in improving the dissertation.

Of course, a big thanks goes to the students and staff at the University of Nottingham.

They have been patient and supported fully the idea of automated assessment even

from the first days of CourseMaster back in 1998. It hasn’t always been easy,

especially in the early days when debugging was a daily occupation.

The help of a number of researchers, which I have met in various conferences, has

been essential. Among them, John Vlissides and Erich Gamma influenced my work

the most. They taught me design patterns and gave me an understanding that I would

not have grasped by only studying their design patterns book. I owe my fascination

with computer science to Alan Kay; his talk entitled “The Computer Revolution

Hasn’t Happened Yet” made a deep impression on me and allowed me to realise that

computer science is young; everyone can contribute a little bit.

A special thanks goes to Charmaine McCracken who for the last six years managed to

put up with me without complaining for my late-night coding.

Last but not least, I am highly indebt to my beloved family, George, Anna and Lydia

that supported me emotionally, spiritually and financially in the difficult days of my

seven years residence in Nottingham.

Thank you all, Athanasios Tsintsifas

 iv

Table of Contents

ABSTRACT ...II

ACKNOWLEDGEMENTS... III

TABLE OF CONTENTS ... IV

LIST OF FIGURES..IX

LIST OF TABLES .. XII

CHAPTER 1, INTRODUCING DIAGRAM-BASED CBA ...1

INTRODUCTION...2

1.1 BACKGROUND ...3
1.1.1 MOTIVATION...3
1.1.2 SCOPE...4

1.2 BRIEF OVERVIEW...5
1.2.1 GENERAL OBJECTIVES...5
1.2.2 PROBLEMS AND SPECIFIC OBJECTIVES ...6
1.2.3 APPROACH ..7
1.2.4 CONTRIBUTIONS..8

1.3 SYNOPSIS OF THE DISSERTATION ..9

CHAPTER 2, AUTOMATED ASSESSMENT, DIAGRAMS, AND SOFTWARE
ENGINEERING...12

INTRODUCTION...13

2.1 LEARNING TECHNOLOGY AND COMPUTER BASED ASSESSMENT13
2.1.1 AUTOMATING THE ASSESSMENT ...14

2.1.1.1 Brief Historical Overview..14
2.1.1.2 Motivation and Directions in CBA...15
2.1.1.3 A Pedagogic View of Assessment..16
2.1.1.4 Automatic Assessment: Advantages and Limitations..18
2.1.1.5 Summary..20

2.1.2 A TAXONOMY FOR CBA ..21
2.1.3 FIXED RESPONSE AUTOMATIC ASSESSMENT...23

2.1.3.1 Multiple Choice Questions ..23
2.1.3.2 Simple Text or Numeric Answer Questions...25
2.1.3.3 Hotspot Graphical Questions ..25

2.1.4 FREE RESPONSE AUTOMATIC ASSESSMENT ..26
2.1.4.1 Programming ...26
2.1.4.2 Essay Exercises ..28
2.1.4.3 Diagrams and Graphics...29

2.1.5 SUMMARY..30
2.2 DIAGRAMS AND LEARNING..30

2.2.1 DIAGRAMS...31
2.2.2 A SHORT HISTORY OF DIAGRAMS ...32

Table of Contents v

2.2.3 RESEARCH AND USE OF DIAGRAMS ACROSS DISCIPLINES ..35
2.2.4 DIAGRAM TAXONOMIES...37
2.2.5 USING DIAGRAMS FOR EDUCATION..38
2.2.6 SUMMARY..40

2.3 SOFTWARE ENGINEERING..41

2.4 SUMMARY...43

CHAPTER 3, EXISTING WORK: CEILIDH AND DIAGRAM EDITORS................................44

INTRODUCTION...45

3.1 THE CEILIDH CBA SYSTEM..45
3.1.1 CEILIDH’S DEVELOPMENT HISTORY ..46
3.1.2 COURSES IN CEILIDH ..47
3.1.3 CEILIDH’S FUNCTIONALITY AND USERS..49
3.1.4 CEILIDH’S ARCHITECTURE AND USER-INTERFACES...51
3.1.5 AUTOMATIC ASSESSMENT IN CEILIDH ..53
3.1.6 ASSESSING PROGRAMMING COURSEWORK...54

3.1.6.1 Dynamic Metric Tools...55
3.1.6.2 Static Metric Tools...55

3.1.7 ADMINISTRATION AND MANAGEMENT IN CEILIDH ..58
3.1.8 EXPERIENCE USING CEILIDH..59
3.1.9 SUMMARY..59

3.2 DIAGRAM EDITORS ...60
3.2.1 HISTORY OF DIAGRAM EDITORS ..61
3.2.2 BITMAP, VECTOR AND OBJECT BASED GRAPHICAL EDITORS..62
3.2.3 PROBLEMS IN THE DEVELOPMENT OF DIAGRAM EDITORS ..63
3.2.4 APPROACHES IN DEVELOPING DIAGRAM EDITORS ...64

3.2.2.1 Multi Domain Diagram Editors ...65
3.2.2.2 Frameworks for Diagram Editors..67
3.2.2.3 Diagram Editor Generators...71

3.2.4 SUMMARY..72
3.3 SUMMARY...73

CHAPTER 4, IDENTIFYING DIAGRAM-BASED CBA..74

INTRODUCTION...75

4.1 DEFINING DIAGRAM-BASED CBA ...76
4.1.1 DEFINITIONS..76
4.1.2 AIMS AND MOTIVATION ..77
4.1.3 SUMMARY..78

4.2 THE PROBLEM OF DEVELOPING DIAGRAM-BASED CBA ..78
4.2.1. THE STUDENT DIAGRAM EDITOR ...80
4.2.2. THE MARKING OF STUDENT DIAGRAMS..84
4.2.3 INTEGRATING DIAGRAM-BASED ASSESSMENT INTO CBA ..86
4.2.4 SUMMARY..87

4.3 DETAILED REQUIREMENTS ..87
4.3.1 FEASIBILITY..88

4.3.1.1 Requirements for Solving the Problem of Customising the Diagram Editor.........................89
4.3.1.2 Requirements for the Marking of the Diagrams ...92

Table of Contents vi

4.3.1.3 Requirements for Integrating Diagram-Based Assessment with CBA..................................93
4.3.2 USEFULNESS ..94

4.4 SUMMARY...95

CHAPTER 5, DESIGN, ..96

INTRODUCTION...97

5.1 DESIGN OBJECTIVES AND REQUIREMENTS ...98
5.1.1 THE STUDENT DIAGRAM EDITOR ..99
5.1.2 THE GENERIC MARKING MECHANISM ...101
5.1.3 INTEGRATION WITH CBA...101

5.2 A HIGH LEVEL VIEW OF THE OVERALL PLAN ..101

5.3 THE DESIGN OF THE DATSYS FRAMEWORK...102
5.3.1 COMMONALITY AND VARIATION AMONGST DIAGRAM EDITORS ..103
5.3.2 KEY ABSTRACTIONS..107
5.3.3 FIGURES..110
5.3.4 TOOLS ..112
5.3.5 COMMANDS...113
5.3.6 HANDLES...115
5.3.7 CONNECTIVITY..116
5.3.8 DAIDALOS, THE ENVIRONMENT FOR AUTHORING DIAGRAM NOTATIONS.............................118
5.3.9 ARIADNE, THE ENVIRONMENT FOR AUTHORING EXERCISES..119
5.3.10 THESEUS, THE STUDENT DIAGRAM EDITOR ...120
5.3.10 SUMMARY..121

5.4 THE DESIGN OF THE GENERIC MARKING SYSTEM ...121
5.4.1 KEY ABSTRACTIONS..121
5.4.2 MARKING SCHEME ...123
5.4.2 MARKING RESULT...125
5.4.3 MARKING TOOLS ..126
5.4.4 CONFIGURATION OF MARKING TOOLS ...128
5.4.5 SUMMARY..128

5.5 THE DESIGN OF THE COURSEMASTER CBA SYSTEM..129
5.5.1 KEY ABSTRACTIONS..129
5.5.2 LOGIN SERVER...131
5.5.3 COURSE SERVER ..132
5.5.4 SUBMISSION SERVER ...134
5.5.5 ARCHIVING SERVER..135
5.5.6 AUDITING SERVER ..136
5.5.7 INTEGRATING COURSEMASTER WITH DATSYS AND THE MARKING SYSTEM..........................137
5.5.8 SUMMARY..138

5.6 SUMMARY...139

CHAPTER 6, IMPLEMENTATION...140

INTRODUCTION...141

6.1 OBJECTIVES..141

6.2 REQUIREMENTS...142
6.2.1 FUNCTIONALITY..142

Table of Contents vii

6.2.2 USABILITY AND USEFULNESS ...143
6.2.3 SOFTWARE QUALITY...144

6.3 IMPLEMENTATION OVERVIEW...145
6.3.1 CHOOSING JAVA AS THE IMPLEMENTATION LANGUAGE ..145
6.3.2 HIGH LEVEL VIEW OF THE IMPLEMENTED PARTS ..146
6.3.3 HIGH LEVEL VIEW OF THE RELATIONSHIPS BETWEEN PARTS ...147

6.4 THE IMPLEMENTATION OF DATSYS...148
6.4.1 DAIDALOS..150
6.4.3 ARIADNE..153
6.4.4 THESEUS...155

6.5 THE IMPLEMENTATION OF THE GENERIC MARKING SYSTEM................................157
6.5.1 MARKING SCHEME ...158
6.5.2 DIAGRAM-BASED MARKING TOOLS..160
6.5.3 MARKING FEEDBACK..161

6.6 THE IMPLEMENTATION OF THE COURSEMASTER CBA SYSTEM163
6.6.1 COURSEMASTER SERVERS ..165
6.6.2 COURSEMASTER CLIENTS ..167
6.6.3 INTEGRATION WITH DIAGRAM-BASED CBA ..168

6.7 SUMMARY...169

CHAPTER 7, USE AND EVALUATION...170

INTRODUCTION...171

7.1 OBJECTIVES..171

7.2 EXAMPLES OF DIAGRAM-BASED CBA EXERCISES..172
7.2.2 LOGIC DESIGN COURSEWORK..174

7.2.2.1 Developing the Logic Design Exercises...174
7.2.2.2 Use and Evaluation of the Logic Design Exercises...176

7.2.3 FLOWCHARTS ..177
7.2.3.1 Developing the Flowchart Exercise ...177
7.2.3.2 Use and Evaluation of the Flowchart Exercise ...179

7.2.4 OBJECT-ORIENTED DESIGN ..179
7.2.4.1 Developing the Object-Oriented Design Exercise ..179
7.2.4.2 Use and Evaluation of the Object-Oriented Design Exercise ..181

7.2.5 EXERCISES IN OTHER DIAGRAM NOTATIONS ...182
7.2.6 SUMMARY..184

7.3 EVALUATION OF DATSYS..185

7.4 EVALUATION OF THE GENERIC MARKING MECHANISM..186

7.5 EVALUATION OF COURSEMASTER ...189
7.5.1 TIMELINE HIGHLIGHTS...189
7.5.2. AVAILABLE COURSES...190
7.5.3 ACADEMIC INSTITUTIONS AND COURSEMASTER...190
7.5.4 USER EVALUATION ...191
7.5.5 IMPROVEMENTS OVER CEILIDH..191

7.5.5.1 Maintainability ..191
7.5.5.2 Extensibility ...192
7.5.5.3 Performance and Scalability ..193

Table of Contents viii

7.5.5.4 Usability...194
7.5.5.5 Security ..195
7.5.5.6 Plagiarism Detection ...196
7.5.5.7 Administration...197
7.5.5.8 User Evaluation ...198

7.6 EVALUATION OF DIAGRAM-BASED CBA WITH COURSEMASTER..........................199
7.6.1 PRACTICAL BENEFITS..200
7.6.2 PEDAGOGIC BENEFITS...200

7.7 SUMMARY...202

CHAPTER 8, CONCLUSIONS ..203

CONCLUSIONS..204

8.1 MEETING THE OBJECTIVES...204
8.1.1 CUSTOMISABLE STUDENT DIAGRAM EDITOR ...204
8.1.2 THE GENERIC MARKING SYSTEM AND MARKING OF DIAGRAMS...205
8.1.3 INTEGRATION WITH COURSEMASTER ...207

8.2 CONTRIBUTIONS...208
8.2.1 CBA ...208
8.2.2 DIAGRAMMING ...209

8.3 FUTURE WORK..209
8.3.1 CBA ...210
8.3.2 DIAGRAMMING ...211
8.3.3 SOFTWARE ENGINEERING ..211

8.4 EPILOGUE..213

BIBLIOGRAPHY...215

 ix

List of Figures

Figure 1.1: A high level view of the dissertation’s scope ..4

Figure 1.2: A mindmap diagram that represents a summary for this thesis9

Figure 2.1: Number of CAA tests found in each subject category...15

Figure 2.2: An adaptation of Bloom’s wheel on the cognitive aspects of learning.........................18

Figure 2.3: Diagram for categorising CBA systems..21

Figure 2.4: Use of different types of assessment in the most popular areas of CAA22

Figure 2.5: Diagrams are between the worlds of text and pictures. ..32

Figure 2.6: One of the earliest diagrams dating from 2500BC and its interpretation.....................33

Figure 2.7: Babylonian tablet (1700B.C.) and the Pythagorean theorem ..33

Figure 2.8: A diagram for the four elements (1482AD) and the tree of life (1652AD)....................34

Figure 2.9: Examples of twenty types of commonly used diagrams ..36

Figure 2.10: Taxonomic dimensions for taxonomies of diagrams ...38

Figure 3.1: Ceilidh’s development timeline...47

Figure 3.2: The structure of a course in Ceilidh consists of units and exercises..............................48

Figure 3.3: Ceilidh user-responsibilities for every course level ...49

Figure 3.4: Ceilidh’s three-layered architecture as it relates to its users...51

Figure 3.5: Student’s view of Ceilidh’s dumb terminal interface ..52

Figure 3.6: Student’s view of Ceilidh’s X-window and Web interface ...53

Figure 3.7: A typical marks distribution among various metrics for a C exercise..........................54

Figure 3.8: Templa and Graphica ..66

Figure 3.9: ET++’s architecture and an example of some graphical editors68

Figure 3.10: Editors created with Unidraw for drawing, circuit, and network design..................69

Figure 3.11: A network, drawing and pert editor based on HotDraw ...70

Figure 3.12: A drawing editor, and a pert diagram editor implemented with JHotDraw............71

Figure 4.1: A high level view of the parts of typical CBA systems..79

Figure 4.2: Types of student environments for CBA types of assessment81

List of Figures x

Figure 4.3: Both representations describe a configuration of the same single pulser82

Figure 4.4: Types of marking mechanisms for CBA types of assessment ..84

Figure 4.5: Requirements for the customisation of the diagram editor ..90

Figure 4.6: Requirements for a generic solution to the marking of diagrams93

Figure 4.7: Requirements for the full lifecycle of CBA...94

Figure 4.8: Potential for usefulness..95

Figure 5.1: Overview of the conceptual plan for diagram-based CBA...102

Figure 5.2: A view of how DATsys relates to the marking of diagrams ..103

Figure 5.3: Examples of common concepts amongst diagram editors..105

Figure 5.4: A high level view of the design of a diagram editor in DATsys..................................109

Figure 5.5: The design for the figure hierarchy...110

Figure 5.6: The tools hierarchy...112

Figure 5.7: The commands hierarchy..114

Figure 5.8: The handles hierarchy ...115

Figure 5.9: The connectors and connection figures hierarchies ...117

Figure 5.10: A plan for a generic marking mechanism..122

Figure 5.11: The marking scheme and its relationship to other data ..124

Figure 5.12: Marking results are associated with a style for rendering the marks to students ..125

Figure 5.13: The hierarchy of marking tools for programming and diagram-based courses.....127

Figure 5.14: The organisation of CourseMaster servers ..129

Figure 5.15: A high level view for the design of the login server ..132

Figure 5.16: The course server is responsible for creating and managing course modules........133

Figure 5.17: The order of messages for a single submission...134

Figure 5.18: The archiving server and the archiving action hierarchy..136

Figure 5.19: The auditing server and the LogWriter and LogSink hierarchies............................137

Figure 6.1: Software dependencies between parts of the implementation146

Figure 6.2: Relationship between DATsys parts...147

Figure 6.3: The three top-level packages that contain all the implementation..............................148

List of Figures xi

Figure 6.4: The distribution of classes to packages in DATsys ..149

Figure 6.5: Daidalos and I/O..151

Figure 6.6: Daidalos’ map of features ...152

Figure 6.7 Ariadne and I/O..153

Figure 6.8: Ariadne’s map of features...154

Figure 6.9: Theseus and I/O...155

Figure 6.10: Theseus’ map of features...156

Figure 6.11: Package distribution of the generic marking mechanism..157

Figure 6.12: Every exercise maintains a marking scheme in a unique package...........................158

Figure 6.13: A simple example of an implementation of a marking scheme................................159

Figure 6.14: Marking tools and their configuration..160

Figure 6.15: The tree components that students see for the marking results.................................162

Figure 6.16: CourseMaster view of packages ..164

Figure 6.17: Two scenarios for the deployment of CourseMaster servers165

Figure 6.18: A CourseMaster monitoring client for teachers..166

Figure 6.19: A CourseMaster student client...167

Figure 6.20: Dependencies between software components ..168

Figure 7.1: Steps for authoring diagram-based CBA ...173

Figure 7.2: Steps for authoring CBA exercises in logic design ...175

Figure 7.3: Steps for authoring CBA exercises in flowchart design ..178

Figure 7.4: Steps for authoring CBA exercise in object-oriented design...180

Figure 7.5: Various views of Theseus for sixteen notations..182

 xii

 List of Tables

Table 2.1: Cognitive aspects of learning according to Bloom...16

Table 2.1: Summary of qualities of assessment according to Brown et al ..19

Table 2.2: Six examples of common types of multiple choices...24

Table 3.1: Ceilidh’s typographic metrics ..56

Table 3.2: Ceilidh’s program complexity metrics ...56

Table 3.3 Ceilidh’s program structure metrics ..57

Table 3.4: Examples of Ceilidh’s features metrics...57

Table 5.1: CourseMaster’s basic objects for communication between the servers........................131

 Chapter 1,

Introducing Diagram-Based CBA

Brief Overview

Synopsis

Background

Introducing
Diagram-Based

CBA

General Objectives Authoring Diagram-Based CBA

Problems and
Specific Objectives

Customisable Student Diagram Editor

Free Form Assessment Mechanism

CBA Related Problems

Approach
Framework for Diagram Editors

General Marking Mechanism

CourseMaster

Contributions
Learning Technology

Diagramming

Software Engineering

Motivation
Practical Benefits

Pedagogical Benefits

Scope
Learning Technology

Diagramming

Software Engineering

“A picture is worth 1000 words”

Ancient Chinese Proverb

1. Introducing Diagram-Based CBA 2

Introduction

Providing higher degree education to an increased proportion of the population is a

challenge for academic institutions. As more students enrol each year on courses,

educators report the increasing difficulty in managing their class [SCB+96], [CS98],

[PS98], [Gt00]. In large class sizes, the traditional means of lecturing, handing out

notes and assessing, are limited. Lecturing can be assisted by advances in audio-visual

technologies [SRJ97], [AHM99]. The handing out of lecture notes can be minimised,

by publishing them as web pages and ensuring that students have access to the

Internet.

Educators have limited choices when faced with the task of assessing large class sizes

[Gg92]. The least desirable option is to reduce the amount of coursework, as good

assessment practices ought to be both incremental and redeemable [BR96]. An

alternative, given that resources are available, is to employ helpers to grade the

submitted work. However, this incurs problems of marking inconsistency, untimely

feedback of results and poor coordination between the helpers.

Computer Based Assessment (CBA) systems can alleviate educators from these

problems by providing mechanisms to automate the assessment of student work. The

Ceilidh system [BBF92] provided functions for the stages of development,

deployment, marking and administration of CBA coursework. Focusing on the

development aspect, Ceilidh offered generic tools for the authoring of automatically

assessed exercises. This has been the most significant reason for its widespread use in

the academic world [BBF+93]. Since its conception, Ceilidh has successfully been used

as an infrastructure for research and experimentation in a wide range of subjects

[FHT98]. It also had direct influence upon many of the CBA systems of the 1990’s

[JU97], [Dc99], [JL98], [KM00].

Both Ceilidh and related systems lack development tools for coursework that is

diagram-based. These tools are needed to research the automation of assessment for

standard and non-standard graphical representations such as, for example, flowcharts,

circuits and object-oriented design diagrams. The work in this dissertation presents

research, design, implementation and evaluation of techniques that facilitate the

1. Introducing Diagram-Based CBA 3

building of automatically assessed exercises that require solutions given in the form of

diagrams.

This chapter introduces the concept of diagram-based CBA. It highlights the thesis’

motivation and scope, and gives an overview of the project’s core parts. The synopsis

explains the structure of this dissertation and how it corresponds to chapters.

1.1 Background

1.1.1 Motivation

A key objective of this research has been to investigate and experiment with the

development of diagram-based CBA. Such experimentation involves the authoring,

running, marking and administration of diagram-based CBA. No earlier work

describes how to combine diagrams with assessment. The reason is that only now,

with a synergy of advances in computer hardware and software engineering can the

complex task of creating an authoring environment for diagram-based CBA be

approached.

In light of a rapid increase in distance learning, research into automatic assessment

should not be seen as an option but as a necessity. As Tsichritzis predicts “We are

evolving toward a situation where some universities will go global and become famous while

others will be restrained both financially and in scope" [Td99]. An increasing number of

published reports document the pedagogic and practical benefits of automating the

assessment process. With appropriate use of CBA, efficiency, reliability and fairness of

large scale assessment can improve.

The authoring of diagram-based CBA exercises can be interpreted as a natural step

towards expanding what is already possible with Ceilidh. Ceilidh supports the

authoring of CBA exercises that employ marking tools for programming, multiple-

choice questions, numeric/string simple-answer questions, and free form technical

essays. Facilities for the authoring of diagram-based CBA exercises complement the

spectrum of possible types for automatic assessment.

1. Introducing Diagram-Based CBA 4

1.1.2 Scope

The authoring of diagram-based CBA combines theory and techniques from learning

technology, diagramming and software engineering. Figure 1.1 illustrates a high level

view of the scope of this work.

Figure 1.1: A high level view of the dissertation’s scope

From a Learning Technology perspective, this research focuses on CBA. Specifically, it

concentrates on the full lifecycle of free response CBA exercises. The full lifecycle

incorporates the stages of authoring, running, marking, and administering CBA. Free

response CBA exercises offer to the students the opportunity to solve coursework

much more freely than selecting predefined options.

In the field of diagramming, two areas have been investigated. The first area is

concerned with the structural representation of editors that support various types of

diagrams. The second area focuses on the interaction for the manipulation and editing

of diagrams. The detection of the commonality and variation of the structure and

behaviour among various diagram editors together with requirements and constraints

1. Introducing Diagram-Based CBA 5

imposed by an orientation towards Learning Technology led to the design of the

DATsys framework for authoring diagram editors, the system reported in this thesis.

Constructing software with quality is the focus in Software Engineering. Rangarajan

et al, citing the ISO9126 standard for software quality, discuss six characteristics:

functionality, reliability, usability, efficiency, maintainability and portability [RSH01].

This thesis supports the view that software quality depends also on the requirements

set by the context within which the software is used. In addition to satisfying the six

characteristics, high quality software anticipates future changes and thereby increases

its longevity.

1.2 Brief Overview

1.2.1 General Objectives

The aim of this research is to investigate, propose, design and evaluate a set of

techniques to significantly reduce the development effort required in building

automatically assessed diagram-based coursework. The deliverables of this research

have pragmatic use. They have been made available to those interested in

constructing diagram-based CBA and those employing it for other diagram-based

projects.

A number of practical questions set the rationale for this thesis:

� To what extent does diagram based automatic assessment constitute an

effective way of marking student exercises?

� What are the advantages and disadvantages in comparison with traditional

assessment of diagrams?

Another set of questions originates from the difficulties surrounding the problem of

diagram editing:

� To what extent is it possible to generate domain and exercise dependent

editors by means of configuring and drawing as opposed to the more difficult

task of programming?

1. Introducing Diagram-Based CBA 6

� How would a suitable architecture balance a high degree of generality without

sacrificing functionality, and what are the limits of the architecture’s

applicability?

The next set of questions arises while considering a generic marking mechanism:

� Is it possible to classify and model diagram representations in a manner that

suits the automation of their assessment in a learning and assessment context?

� What would be a suitable form of specification for marking rules that

automatically assess student coursework?

� How can those marking rules return appropriate feedback to the students?

� What advantages would such a system have in contrast with other possible

assessment mechanisms?

The final set of questions arises from the need to evaluate diagram-based CBA in a real

environment:

� How does diagram-based CBA perform?

� Most importantly, what are the effects on the learning and assessment

processes?

Providing authors with a suitable authoring environment for diagram-based CBA is a

crucial objective and a necessary step in attempting to answer the above questions.

1.2.2 Problems and Specific Objectives

Three major problem areas need to be considered to answer the questions set in the

general objectives.

The first problem area is concerned with the building of a graphical editor customised

to support the exercise and its domain. Software engineering research has

documented methods for the construction of generic diagramming editors over the

past 10 years [Vj90], [Jr92], [Bj95], [BG97]. The aim for most of these methods has been

to empower programmers with libraries powerful enough to considerably ease the

development of domain specific graphical editors such as circuit, flowchart, and

1. Introducing Diagram-Based CBA 7

drawing editors. Yet, these libraries are complex and demand significant

programming expertise. The effort involved in producing a single “per domain” or

“per exercise” editor, is prohibiting their use in a CBA context where the time and

resources spent in development have to be minimised. The objective of this first

problem area is to design and implement a framework for generic diagram editors in

which the creation of a new type of editor is a simple task that does not require

programming.

The second problem area is concerned with the marking process. It extends to the

description and execution of the marking criteria and the creation of appropriate

feedback. The automatic assessment of diagrams belongs to the “free response” type

of assessment. This is because the solution space of a diagram-based exercise has

potentially infinite number of solutions with varying degrees of correctness. Foxley

and Zin have described a generic technique to express marking schemes for assessing

exercises in programming languages using “Oracles” [FZ93]. Oracles represent the

marking criteria that are used to mark an exercise. They are described in a form that

uses regular expressions and they express the text matching behaviour that can

conveniently be used to assess an exercise solution. The objective of the second

problem area is to investigate whether a similar technique can be used to describe

marking schemes for diagram-based coursework.

The third problem is concerned with the provision of support for the full lifecycle of

diagram-based CBA exercises. Initially this research started with the intention of

extending the Ceilidh CBA system with a diagram-based type of exercise. However,

for many reasons, including a need to increase scalability, performance,

maintainability, extensibility and usability, Ceilidh had to be redesigned and re-

implemented. The successor of Ceilidh is named CourseMaster [FHH+01]. While

restructuring Ceilidh into CourseMaster, the objectives have been to integrate the

diagram-based facility with the generic marking mechanism and to increase software

quality.

1.2.3 Approach

A series of domain dependent graphical editors were developed to acquire a practical

understanding of diagram editing. The experience gained from these prototypes

1. Introducing Diagram-Based CBA 8

indicated the commonality in the structure of diagram editors across multiple

domains. A series of attempts were made to define a common base as an object-

oriented framework from which a family of domain dependent diagram editors could

be derived. The initial attempts had a high degree of structural complexity and

redesign was necessary. In each subsequent version, the objective was to maintain the

architectural decisions that made the framework easier to change and understand.

Two such systems had to be evolved until the final version of DATsys was integrated

with CourseMaster.

At first, the marking process of specific domains that use diagrams might seem to bear

little resemblance across domains. Circuit diagrams are fundamentally different from

software design diagrams and even more different from music transcriptions.

However, the process of checking the syntactic correctness of the diagram solution and

that of attributing marks can be abstracted and configured to reflect a great range of

domains and exercise specific criteria. By encapsulating common marking checks into

marking tools and defining the protocol of their interaction, it is possible to abstract

the level of marking in such a way that new domains can be accommodated with very

little effort.

Initially DATsys aimed at using the Ceilidh system for its functions of presenting

information, administering and automatically assessing course modules. However,

alterations essential to the marking mechanism forced the redesign of Ceilidh using

object-orientation. The evolved system changed its name to CourseMaster and is

described in [HHS+01], [FHH+01] and [Cm01].

1.2.4 Contributions

The primary contribution to this research is in the area of CBA. The combination of

CourseMaster and DATsys considerably eases the building of automatically assessed

diagram-based exercises. Prototypical coursework has been built for the areas of logic

design and software design (flowcharts and object-oriented diagrams). Libraries of

diagram elements have been developed for more than 50 diagram notations and are

distributed together with the authoring system. The system offers facilities to

educators to manage the full lifecycle of automatically assessed diagram-based

1. Introducing Diagram-Based CBA 9

coursework. CourseMaster and DATsys have replaced Ceilidh and are now in use in

an increasing number of academic institutions.

The second contribution is in the field of diagramming. DATsys offers practical

benefits for the diagramming community by providing a platform to ease the

development of new graphical editors. It has found successful use in a number of

projects, notably for its diagram editor generating facilities. These projects are

described in chapter 8.

1.3 Synopsis of the Dissertation

This chapter presented the motivation, scope, and background for the research. It

introduced the three main problem areas, set the general objectives, explained the

approach and highlighted the contributions. The research combines theory and

techniques from the fields of CBA, diagramming and software engineering. It aims for

a configurable, usable and extensible design that facilitates the authoring of diagram-

based CBA. Figure 1.2 illustrates a high level view of the chapters and their contents.

1. Introduction

8.Conclusions

7. Use and
Evaluation

2. Background

6. Implementation
5. Design

4. Identifying
Diagram-Based CBA

3. Existing Work

Diagram-Based CBA

Background

Motivation

Scope

General Objectives

Specific Objectives

Approach

Contibutions

Summary

Reflection on Objectives

Contributions
CBA

Diagramming

Software engineering

Future Work
CBA

Diagramming

Software engineering

Use
Logic diagrams

Flowcharts

OOD diagrams

Evaluation

DATsys
Daidalos

Ariadne

Theseus

Generic Marking Mechanism

CourseMaster

Diagram-based CBA

Automatic Assessment

Diagramming

Software Engineering

DATsys
Daidalos

Ariadne

Theseus

Generic Marking Mechanism

CourseMaster

DATsys
Key Concepts

Architecture

OO Framework

General Marking Mechanism
Marking Tools

Feedback

CourseMaster
Servers

Clients

Integration to CBA

Student Diagram Editor

Marking Scheme

Integration to CBA

The Ceilidh CBA

Approaches for Developing
Diagram Editors

Figure 1.2: A mindmap diagram that represents a summary for this thesis

1. Introducing Diagram-Based CBA 10

Chapter 2 introduces key concepts in the areas of CBA, diagramming and software

engineering. The focus in CBA is on free form assessment for summative purposes.

The focus in diagramming is on the relationship between learning and diagrams and

on the use of diagrams in education. Finally, the focus on software engineering is on

increasing software quality for CBA and diagram editors. This chapter highlights the

main problems in each area, in order for the third chapter to present the most relevant

approaches found in the literature.

Chapter 3 presents the work upon which this research is based and leads to the

problem areas that are discussed in the following chapter. It documents the existing

work in free response CBA and diagram editing. Firstly, it explains the techniques

used in Ceilidh for free response CBA in a controlled environment and for formal

marking. Secondly, it reviews and classifies systems for diagram-based editing.

Chapter 4 expounds the problem of authoring diagram-based CBA and presents the

forces that need resolving. The three problem areas that have been identified are

concerned with diagram editing, the marking process and the integration and support

of the full lifecycle of diagram-based CBA. The problem of balancing the opposing

forces of applicability and usability against simplicity and maintainability led to the

early adoption of ideas belonging to object-oriented technology, application

frameworks, and patterns. These are reviewed in the literature review of software

engineering in chapter 2.

The main architecture and design decisions for creating DATsys, the generic marking

system, and CourseMaster follow in chapter 5. The conceptual solution is shown to

satisfy the objectives of each problem area. The problem of customising the diagram

editor to the exercise’s domain is approached by designing a framework and

authoring system for developing diagram editors. The problem of developing and

using assessment criteria for diagram based CBA is approached by designing a generic

marking system that can be customised with little effort. Finally, the problem of

integrating the two solutions into a usable CBA system, for summative assessment in a

controlled environment, is approached by redesigning the existing Ceilidh system.

Chapter 6 reports on a prototype that implements the architectural designs described

in chapter 5. It documents the parts, roles and interfaces of all the software

deliverables. These include the developer’s authoring environment (Daidalos), the

1. Introducing Diagram-Based CBA 11

teacher’s authoring environment (Ariadne), the student’s diagram-based exercise

environment (Theseus), the object-oriented framework for diagram-based editing

(DATsys), the generic marking system and CourseMaster.

Chapter 7 reports on the evaluation of the system. It demonstrates considerable

success in each of the areas on which it has set objectives. The authoring environment

facilitates the authoring of a variety of diagram-based CBA exercises in a range of

domains. Automatically assessed exercises for three domains have been evaluated at

the University of Nottingham. Evaluation results are also discussed for the design of

DATsys, the generic marking system and for the CourseMaster CBA system. A

number of evaluative perspectives substantiate the original speculation for the

pedagogic and practical benefits of the deliverable software.

This thesis supports the argument that the development of an authoring environment

for diagram based CBA is feasible and useful. Chapter 8 highlights these claims by

reviewing the dissertation’s key points and linking the results given in chapter 7 to the

general objectives. It also discusses the contributions of this research to the fields of

CBA and diagramming while indicating areas for future work.

Chapter 2,

Automated Assessment, Diagrams, and Software Engineering

Learning Technology and CAA

Diagrams and Learning

Software Engineering

 Automated Assessment,
Diagrams, and

Software Engineering

Introduction
Definitions
History
Directions

Rationale
Practical
Pedagogical

Taxonomy of CBA Systems
Purpose

Response
Fixed
Free

CBA Free-Response Systems

Fixed
Multiple Choice
Simple Answer
Graphical Hot-spot

Free
Programming
Essays
Design

Introduction
Definitions
History
Directions

Survey of Diagram Types
Used in Education
Taxonomies for Taxonomies of Diagrams
Classification of Editors

Definitions
History
Problems Software Crisis

Object Orientation

Elements
Software Patterns
Design Patterns
Object Oriented Frameworks

“The map is not the territory”,

Alfred Korzybsky, Science and Sanity, 1939

2. Automated Assessment, Diagrams and Software Engineering 13

Introduction

This chapter presents the background of this research in the fields of CBA,

diagramming and software engineering. It comprises of three sections, one for each

field respectively.

The first section, starts with an overview of automatic assessment. It introduces key

definitions, historical facts and briefly summarises the characteristics of assessment

from a perspective of educational technology. Based on these, it examines the

rationale in moving from traditional to automatic assessment. As the use of CBA

systems in higher education is rapidly increasing, a range of systems supporting

automatic assessment is emerging. Several publications include surveys of CBA

systems in use [Bj93], [SM97], [CE98a]. The focus of this section is not to reiterate

these summaries but to expose the background concepts around which diagram-based

CBA can be established. Published work in diagram-based CBA is sparse. The only

existing work in the field, elaborates on diagram-based assessment for software

design.

The second section of this chapter introduces the concept of diagrams and examines

their role in learning. It also reviews diagram-use and research directions among a

number of disciplines. A categorisation of taxonomies of the study of diagrams is

presented to point out the various research interests.

The third section investigates software engineering techniques for designing and

implementing complex software. It introduces software engineering, and surveys the

state of technology in object-orientation, software design and patterns. Although the

focus concentrates on building software generally, this section leads to issues specific

to the building of CBA software and diagram editors.

2.1 Learning Technology and Computer Based Assessment

Learning technology is a widely used term that refers to the application of technology

to enhance the learning process. Computer Assisted Assessment (CAA) is a field of

learning technology that studies the use of computers to deliver, analyse and mark

student coursework. Research interests in the CAA field include the analysis of data

2. Automated Assessment, Diagrams and Software Engineering 14

collected via Optical Mark Recognition readers (OMR). A further specialisation of

CAA is Computer Based Assessment (CBA). What differentiates CBA from CAA is

that in CBA the coursework’s solution is entered on-line through a computer terminal

[CE98a].

The first subsection describes how the CBA community views the rationale for

automating the assessment. It investigates what the education community believes

constitutes the criteria for effective and quality-based assessment. These findings

serve as a basis for debating the benefits, limitations and consequences of automating

the assessment process. The second part surveys existing CBA systems, reporting on

past and current research.

2.1.1 Automating the Assessment

2.1.1.1 Brief Historical Overview

The first attempts at using computers to automate the process of assessing student

work were reported in the early 1960’s [FW65]. Forsythe and Wirth presented a

system for the automatic assessment of programming exercises based on Balgol, which

was a dialect of Algol 58. The system allowed the students of a numerical analysis

course at the University of Stanford to submit the solutions of their exercises on

punched cards. The submitted work was executed, analysed and marked by a

“grader” program after the coursework’s deadline. Early automatic assessment

systems were built almost exclusively towards computer science related subjects.

Systems supporting automatic assessment in other fields such as physics, mathematics

and chemistry appeared soon after [TD76], [RH83], [Mr86]. Initial approaches dealt

with the problem of marking student solutions by simplifying the types of question.

Simple answer matching mechanisms were used to mark the solutions of simplified

exercises.

CAA has been used in academia during the 1990’s, to assess a wider variety of subject

matters. In a study in the use of CAA in 1997, Stephens and Mascia presented the

results of a survey carried out in institutions of higher education in the UK. From the

644 questionnaires that were sent, 445 were returned giving a response rate of 73%.

According to the results, 280 respondents were using CAA, 20 were developing CAA,

2. Automated Assessment, Diagrams and Software Engineering 15

10 were intending to use CAA and 132 were not involved in CAA. In a section that

contemplated the future of CAA 73% of the respondents that already used CAA

indicated that their use of CAA would most likely increase in the future.

Figure 2.1: Number of CAA tests found in each subject category

Figure 2.1 depicts the number of CAA tests among subject areas [SM97]. In a

subsequent survey that was carried out by McKenna and Bull, it has been reported

that more than 80 universities employ some form of automated assessment [KB99b].

2.1.1.2 Motivation and Directions in CBA

Automatic assessment has the potential of becoming a subject in its own right. It

concentrates the interest of educators from a wide range of disciplines who maintain

the perspective of their discipline. This produces a variety of publications with

interdisciplinary topics. Although themes vary, the commonly perceived benefits are

pedagogic and practical. Bull summarises the opinion of the published community

stating that "computer assisted assessment can be used to enhance the student learning

experience, expand assessment processes and potentially provide efficiency gains for academic

and support staff” [Bj99]. Summons et al express a pragmatic view on the need for

automatic assessment: “With large numbers of students with different learning styles, there

is a need to develop instructional arrangements that maximise student learning, while trying to

minimise the cost in terms of time, effort and money" [SCB+96].

2. Automated Assessment, Diagrams and Software Engineering 16

The marking process is a key concern for any CBA system because maintaining the

balance between resource constraints and effective assessment in large classes can be

exceedingly demanding. How much automation can be used and in which part(s) of

the assessment is often the subject of debate. Canup and Shackelford support the view

that although components of the marking process can be and should be automated,

the actual marking has to be performed by humans [CS98]. Mason and Wait argue for

hybrid approaches in which only limited parts of the marking process are automatic

[MW99]. In an earlier attempt, Mason and Wait report on the experience in running

final exams in an on-line fashion [MW98]. Arnow and Barshay support the idea of

fully automating the assessment process and argue for the potential practical and

pedagogic benefits [AB99].

2.1.1.3 A Pedagogic View of Assessment

Learning is measured through assessment. Research in educational psychology has

documented various models for the study of learning. A comprehensive survey of the

most important models for learning developed after the beginnings of the 19th century

is given by Bransford, Brown and Cocking [BBC99]. The most cited model by the

CAA published community is Bloom’s Taxonomy [Bs56]. Bloom defined a

classification of cognitive learning that contains ascending levels of abstraction that

augment gradually from simple knowledge recall to the ability to evaluate.

Bloom’s taxonomy has been used widely as a model to argue for the adoption of

teaching strategies in both computer science and other sciences [BS00], [SM00],

[Mp00]. The taxonomy lists knowledge, comprehension, application, analysis,

synthesis, and evaluation as cognitive aspects of learning.

Cognitive aspect of learning Ability
Knowledge To remember
Comprehension To understand

Application To apply concepts to solve problems
Analysis To break down to concepts
Synthesis To combine concepts

Evaluation To make judgements

Table 2.1: Cognitive aspects of learning according to Bloom

2. Automated Assessment, Diagrams and Software Engineering 17

Knowledge is the foundation for all learning and the basis for all higher levels of

thinking. The assessment of knowledge involves the recall of facts.

Comprehension represents the lowest level of understanding. It includes the ability

to translate, interpret and extrapolate meaning while determining implications and

consequences. The assessment of comprehension involves verifying assumptions and

arguments and examining the process of inference.

Application is defined as the use of abstractions in order to solve a problem. The

abstractions may be any information, ideas, methods, theories or skills. The

assessment of application consists of evaluating the solution of a problem and

analysing the process of deriving it.

Analysis emphasises the breakdown of a topic into its parts and the search for

detecting relationships between the parts and the methods of their organisation.

Assessing analysis involves evaluating the ability to use the parts of a topic coherently

to arrive at conclusions.

Synthesis is defined as the process of combining parts or elements to form a whole.

Assessing synthesis requires verifying the selection, composition of the parts, and all

the steps in the synthesising process.

Evaluation is the highest level in Bloom's taxonomy. It involves reviewing evidence

and making appropriate judgments. Assessing evaluation skills incorporates the

detection of abilities to compare, argue and perceive fallacies in arguments.

The task of formulating an assessment strategy lies with the experience of the educator

and/or that of the academic institutions. Although guidelines and helpful

methodologies have been documented in literature, debates as to the efficacy of

current assessment techniques to test the real abilities of learners often surface. This is

especially true in fields that change rapidly where the need to reflect a change in the

assessment process is even greater.

2. Automated Assessment, Diagrams and Software Engineering 18

Figure 2.2: An adaptation of Bloom’s wheel on the cognitive aspects of learning

Bloom’s taxonomy is commonly used as a basis of designing assessment strategies.

Bloom’s wheel, depicted by Figure 2.2 is a tool that helps educators to identify what is

important to assess in relation to learning.

2.1.1.4 Automatic Assessment: Advantages and Limitations

The automation of the assessment process for all but those tested at the knowledge

level of Bloom’s model is a complex task. The assessment of knowledge can be

automated because it relies on a simple matching algorithm. For example, simple

multiple-choice questions typically assess knowledge only. The assessment of

synthesis, analysis and evaluation skills is much harder to implement and is largely

domain dependent.

2. Automated Assessment, Diagrams and Software Engineering 19

Presuming that assessment criteria can be modelled and automated, what effects

would that have on the assessment process for formal marking in a controlled

environment? Table 2.1 lists the qualities assessment should have according to Brown

[BR96]. Although there may be some deviation between Brown’s set of qualities and

others in specific subject matters, it represents a common denominator.

Assessment must be: In order to:
Valid Accurately assess the delivered material
Reliable Promote consistency between assessors
Fair Offer fair opportunity for success
Equitable Be indiscriminating between students
Formative Give many opportunities to learn through feedback
Well timed Provide learning stimulus and be fair
Incremental Increase reliability and consistency over a period of time
Redeemable Allow a series of opportunities
Demanding Challenge students and ensure high standards
Efficient Be manageable within the constraints of resources

Table 2.1: Summary of qualities of assessment according to Brown et al

The validity of assessment is proportional to the experience of the assessment

designer. Reliability and fairness increase by automating the assessment process

because the same marking mechanism is employed to mark each piece of work. There

is no possibility of discrimination and students are well aware of the fact that everyone

is treated equally by the system. Formativeness is related to the feedback given to

students. The timely fashion which CBA software imposes, forces both students and

educators to respect deadlines.

Automating assessment facilitates an incremental style of assessment. Benford et al

suggest that weekly assessments of programming courses increase the consistency

between the learning of the material and student results [BBF93]. Small and frequent

chunks of coursework rather than a major piece of work deliver better results in

subjects such as programming. By allowing students to submit their solutions more

than once and by presenting them with immediate feedback upon submission, CBA

coursework motivates students to work harder and get a better mark. During the

lifetime of the course, educators can monitor the progress of the students and fine-tune

the delivery of both the theoretical and the practical aspects of the taught material.

2. Automated Assessment, Diagrams and Software Engineering 20

However, as Charman and Elmes underline, CBA can’t be applied to assessment for

all types of learning [CE98a]. There is a range of skills that CBA cannot address.

Specifically, oral, presentation and interpersonal skills cannot be practically assessed

yet using current technologies. Furthermore, the assessment of complex writing skills

is still very limited, although continuous research is progressing towards better

results. Finally, practical skills acquired in laboratory-based sessions demand much

more complex CBA techniques.

A misunderstanding of the amount of effort that is needed to employ CBA

appropriately is a considerable limiting factor to the use of CBA in higher education.

Authoring CBA exercises is more time consuming than authoring distant learning

material. As Doube reports [Dw00], the authoring of learning material should not be

perceived as an additional responsibility for educators but as a separate task that does

not interfere with their workload. Authoring of teaching and assessment material is

more time-consuming than traditional on-campus teaching.

Neuman speculates that “electronic education” that includes CAA may be better for

disciplined students who “expect more than just being entertained” and is more useful

for teaching fundamentals [Np98]. This is because “such courses are highly susceptible to

cheating, which can be expected to occur rampantly whenever grades are the primary goal, used

as a primary determinant for jobs and promotions”. Citing Brynjolfsson and Hitt, Neuman

suggests that a new approach in education is required and might initiate a “painful and

time consuming period of reengineering, restructuring and organisational redesign” [BH98].

2.1.1.5 Summary

The motivation in automating the assessment process in higher education is to

alleviate the practical problems introduced by large classes and to harness potential

pedagogic benefits. Both aims are worth pursuing and can be combined. Bloom’s

taxonomy on the cognitive aspects of learning is a useful model for understanding

assessment in general. Not all of Bloom’s cognitive levels can be easily assessed, if at

all, using automatic assessment. However, advances in the automation of the

assessment of essays and of programming exercises suggest that in some cases all

Bloom’s levels can be assessed automatically.

2. Automated Assessment, Diagrams and Software Engineering 21

2.1.2 A Taxonomy for CBA

Culwin distinguishes between two types of automated assessment, fixed response and

free response [Cf98]. Figure 2.3 depicts a taxonomy of CBA systems based on Culwin’s

view. In the literature, fixed response assessment is also referred to as objective and

free response as non-objective. The distinction between the two is based on the nature

of response to the CBA exercise. Fixed response systems require the learner to choose

a solution from a list of available options. The assessment is based on a strictly

discrete model of validating correct answers against a single solution. Charman and

Elmes [CE98a] advocate that the fixed response type of assessment is sufficient to

cover the main aspects of evaluating student learning. However, for disciplines

emphasising design skills, it is much harder to devise effective automated assessment

based on fixed response. This is because a single value answer is not adequate to

assess the thought processes that are required to solve the design problem.

In contrast, free response systems can assess unanticipated solutions. Examples of

such solutions are the implementation or design of computer programs, essays,

diagrams, sketches and drawings. Typically, in free response assessment a qualitative

strategy describes the criteria attributing to the evaluation of the exercise.

Fixed ResponseFree Response

SummativeFormative

CBA

Multiple Choice
Simple Text Answer
Simple Numeric Answer
Hotspot Graphical

Essay
Programming

Design
Diagrams

Exam-based
Coursework-based

pre-prepared
on-demand

Figure 2.3: Diagram for categorising CBA systems

As Culwin explains, "The majority of existing systems are fixed response and most of them

are multiple choice" [Cf98]. He continues stating that this is not surprising because “the

development of free response assessment is much harder or even impossible”.

The next division in CBA software is based on the purpose of its applicability. CBA

can be used for formative, summative and diagnostic purposes. In formative assessment,

the aim is to enhance learning by providing helpful feedback to the learner, whereas in

2. Automated Assessment, Diagrams and Software Engineering 22

summative assessment the aim is to discriminate between students’ learning ability.

Formative assessment is further categorised by the strategy of assigning coursework:

either on-demand or pre-prepared.

Formative assessment enhances the learning process by providing immediate and

periodic feedback. Student feedback is given to encourage self-assessment. It is

monitored by educators to adjust the delivery of the material. The material for

assessment can be pre-prepared or selected from an exercise database according to

criteria based on the learner’s profile, personal history or other relevant information.

Formative assessment is not part of a curriculum. It therefore has limited use within

an academic environment and typically is not completed by students. The purpose of

diagnostic assessment is to identify whether a student has sufficient understanding of

the prerequisite material needed to start a module.

Summative assessment concentrates on measuring and quantifying the learner’s

performance, attempting to formulate an accurate judgement about a student’s

achievement. It can be employed to offer quality assurance checks, both within an

institution and externally, with evidence, results, and justifications.

Figure 2.4: Use of different types of assessment in the most popular areas of CAA

 In the study by Stephens and Mascia of the use of CAA in institutions of higher

education in the UK, it has been found that in most fields CAA is used mostly for

summative purposes. Figure 2.4 depicts the percentages of CAA use among fields.

2. Automated Assessment, Diagrams and Software Engineering 23

2.1.3 Fixed Response Automatic Assessment

The majority of academic institutions that employ CBA technology, either for

formative or summative assessment, use techniques based on fixed response

assessment. CBA systems that support fixed response assessment use either:

� Multiple-Choice Questions (MCQs)

� Simple text or numeric value exercises

� Graphical hotspot exercises

The description of the marking process in fixed response CBA is simple. Only a

minimum of information needs to be described. Typically, fixed response based CBA

is employed by domain experts that do not have, nor wish to have, the knowledge

required to describe complex marking schemes.

McKenna and Bull, in an investigation of the potential and the limitations of fixed

response assessment, described techniques for improving assessment by integrating

MCQs with other types of assessment [KB99]. According to their view, fixed response

assessment is commonly assumed useful for assessing the first three or four levels of

Bloom’s taxonomy. However, they cite the view of other educationalists such as Simas

and McBeath that suggest that by designing appropriate questions, all six levels can be

sufficiently tested [SM92].

2.1.3.1 Multiple Choice Questions

Multiple-choice questions represent the simplest form of automated assessment. Their

structure consists of a main body composed of question statements and a set of

options. Typically, one of these options is correct and the others serve as a decoy with

a varying degree of incorrectness. Variations of MCQs include those requiring a

simple true/false answer, those requiring a priority order and those that need a

multiple selection of options. Table 2.2 lists six of the commonly used types. MCQs

have been successfully used to assess a wide range of learning in various fields [Bj93].

Literature that proposes methodologies in creating educationally appropriate MCQs

abounds. The implementation of the marking process is algorithmically simple even

in its most complex form, for example that of multi-response MCQs. Examples

2. Automated Assessment, Diagrams and Software Engineering 24

suggesting guidelines for designing the questions have been reported for many fields.

There is some concern about “guessing” when MCQs are used for summative

purposes. However, some techniques have been used to decrease this risk. Among

these, subtracting marks for incorrect answers and increasing the amount of

assessment appear to be efficacious deterrents.

Question Type Task
True/False Choose right or wrong
Item order Match items in a list

Multiple Choice Select correct answer from a list of alternatives
Multiple Completion Select correct combination from a list of combinations

Assertion/Reason Choose the correct reason for an assertion
Best Answer Choose best answer from a list of correct answers

Table 2.2: Six examples of common types of multiple choices

Currently, a number of commercial and non-commercial systems offer authoring

facilities for MCQ-based assessment. QuestionMark and QuizIt are between the most

widely known systems. QuestionMark presents the educator with a graphical

authoring environment that facilitates the development of several types of MCQ CBA:

Matching, Matrix, True/False, Multiple Response, Pull-Down List and Ranking.

QuestionMark has modules for administering coursework, exams and surveys and is

multi-platform [Qm01]. QuizIt’s approach to the authoring of material has been to

create a language named QBL, on which to describe the CBA exercise. QBL has been

designed as a subset of SGML [Gc92]. According to the QuizIt developers, Tinoco et

al, the system contains an authoring module and a marking module. It can adapt to

student abilities by branching, using conditional checks on their performance. After

evaluating QuizIt, the authors reported an increase in efficiency and effectiveness of

assessment [TBF97].

MCQs do not have to be purely textual. To make the assessment process more

interesting to students, graphics and multimedia are often employed. WebMCQ is a

system that uses graphics, and according to its authors, this makes the automatic

assessment of multiple-choice exercises much more attractive to students [DG99].

2. Automated Assessment, Diagrams and Software Engineering 25

2.1.3.2 Simple Text or Numeric Answer Questions

Exercises that require the completion of a sentence, of a fact or a statement in textual or

numeric format represent the second category of fixed response assessment. The

student response can be marked in a simple manner using an algorithm that compares

the answer against the model solution. In a more advanced form, the comparison has

to take into consideration all cases where there is a range of acceptable solutions. For

example, in a question requiring text and asking for the name of the Greek

philosopher who taught Plato, the answer could be either “Socrates” or “socrates”.

The use of regular expressions to realise such comparison is advantageous because the

two above answers can be evaluated with the single regular expression

[S|s]ocrates. Questions with numeric answers often need to take account of

rounding and precision errors. Wrong answers might also have to be defined to check

the degree of student’s understanding for part of the concepts involved or for

indicating the thought process that led to the answer.

Systems that facilitate the authoring and running of the simple text or numeric type of

assessment include Ceilidh [BBF+93], TRIADS [Md99], and Examine [EX95].

2.1.3.3 Hotspot Graphical Questions

Hotspot graphical exercises require the student to select an area or item, drag and

drop a component over an area or join/connect two or more items or areas. This type

of assessment is advantageous in courses where the graphical element is very

important. The marking scheme authored by the question developer must have a

notion of the graphical elements. Most of the CBA systems that offer this type of

exercise have been written in multimedia authoring packages such as Macromedia’s

Authorware [Mac95] and Assymetrix’s Toolbox [Ass94]. An advantage of using

multimedia is that young students, who have a limited attention span, are more

attracted to the exercises. Students may experience exercises as games and it is a

common argument that learning improves while in a playful state of mind.

TRIADS is a system that supplies functionality for the graphical hotspot type of

exercise [Md99]. Most of the other systems are being developed in multimedia

authoring packages.

2. Automated Assessment, Diagrams and Software Engineering 26

2.1.4 Free Response Automatic Assessment

Free response automatic assessment is characterised by the free form response of

students to the exercise and the criteria-based algorithm that marks the solution. Free

response assessment is suitable when the higher levels of Bloom’s taxonomy need to

be assessed, specifically: the application of knowledge, analysis, synthesis and

evaluation. CBA systems that support free response assessment are almost exclusively

built for specific subjects such as:

� Programming

� Technical essay writing

� Diagrams and graphics

The ordering of the above categories represents the amount of work that has been

invested in each category. Existing free response CBA systems are mostly used in the

assessment of programming whereas the automation of assessment of essays,

diagrams and graphics are still in their early stages.

2.1.4.1 Programming

The Ceilidh courseware system was one of the first CBA systems to provide

functionality for the full lifecycle of programming courses. Although, as mentioned in

the historical review of CAA in section 2.1.1, the first marking programs were

implemented in 1965, Ceilidh was the first system to cater for the authoring of CBA

coursework, the administration and management of modules and the presentation of

information to the students. From its conception in 1988, Ceilidh had an important

impact on the research and implementation of related CBA systems.

Demonstrating that the automatic assessment of computer programming exercises is

feasible and effective [BBF+93], [BBF+95], the Ceilidh system’s success can be largely

attributed to the provision of an assessing mechanism for creating and running

“oracles” [FZ93]. Oracles are checkers that run against a students’ solution to find

whether specific criteria are met. Oracles have been developed and used to aid the

assessment of exercises in imperative, functional and object-oriented programming,

music harmonisation and technical essay writing [FHT+99], [FSZ97], [MGC98],

2. Automated Assessment, Diagrams and Software Engineering 27

[FL94]. Although generally oracles are restricted to the domain from which the

exercise belongs, some are generic enough to be used across domains. An overview of

the Ceilidh system and of the main oracles is presented in the next chapter.

The need for automating the assessment in programming has been perhaps greater

than in any other field, primarily because programming courses have attracted an

increasing number of students. Kay et al express the opinions of many educators in

this field stating that: “The time has come to devote effort and resources to developing robust,

flexible, widely available tools for automatic program evaluation. We can no longer pretend to

be able to assess student's work validly and reliably by manual means" [KSI94].

Jackson and Usher describe the ASSYST system in [Jd00]. ASSYST is a hybrid CBA

system in which some of the marking processes are automated and some are

performed by human markers. Jackson and Usher claim that a hybrid approach has

advantages over fully automated assessment. By allowing fine-grained selection

between automatic and manual assessment a teacher can benefit from the marking

consistency and speed while maintaining full control over student results. The

assessment techniques used in ASSYSTS have been influenced by the Ceilidh system

and this is acknowledged by Jackson and Usher [JU97].

Daly presented RoboProof, an on-line teaching web-based system [Dc99]. RoboProof

has been used to teach the syntax and structure of programming languages. Daly after

experimenting on a C++ course, reported results that demonstrate an improvement in

learning and assessment. The exercise marker is used only for output checking,

however, there is an option to customise the marking process. RoboProof is used in a

less strict fashion than other programming based CBA systems. It allows any number

of submissions and does not penalise for failures. Daly currently investigates making

the marking system understand particular errors and to guide students to appropriate

learning material. Again, the Ceilidh project has been a major influence and this is

referenced by Daly’s work.

Joy and Luck presented a CBA system entitled BOSS that includes facilities for both

automatic and manual marking. In Boss a graphical user interface has been devised to

ease the development of the marking scheme under the name "Electronic MarkSheets".

Evaluating the Ceilidh system Joy and Luck state: "One type of package in particular

deserves some discussion because of their size and distinct approach. Systems such as Ceilidh

2. Automated Assessment, Diagrams and Software Engineering 28

are packages which provide a full programming environment, handling not only submission

and testing of assignments, but also providing tutorial material and a user friendly interface to

the machine". Having evaluated Ceilidh, Joy and Luck concluded that a major problem

in Ceilidh is not supporting customisation of its functionality [JL98].

Korhonen and Malmi have described TRAKLA, a system to aid the learning of data

structures and algorithms. The system employs visualisation, animation and

simulation for presenting concepts to the student. It also contains automatic

assessment tools for formative evaluation. The architecture of TRAKLA’s assessment

component is similar to Ceilidh and this is acknowledged by Korhonen and Malmi

[KM00].

2.1.4.2 Essay Exercises

The marking of essay exercises has attracted significant interest among CAA

researchers for the last forty years. Evaluation results have been reported but only for

prototypical laboratory testing. A limited number of CAA case-views refer to

examples of automated essay marking in real educational environments. Current

surveys reviewing the area include that of William’s [Wr01], Christie [Cj99], and

Whittington and Hunt [WH99].

In the earliest documented approach, the Project Essay Grade (PEG) system, a simple

style analysis was used to identify the strengths and weaknesses of a solution. Page,

making a distinction between marking for content and style, suggested that the surface

features of an essay could be used to predict the mark that a human examiner would

assign to the essay. Surface features included attributes such as the number of words,

the average sentence length, the amount of punctuation and many other syntactical

characteristics [Be94]. The PEG system primarily relied on linguistic features of the

model solution to return a mark.

A second approach based on the Latent Semantic Analysis model (LSA) focuses on

analysing the textual content to understand the deep structure of each statement. It

ignores the linguistic and structural features of essays and instead attempts to find the

significance of each individual word applying a matrix algebra technique known as

Singular Value Decomposition (SVD). Foxley and Lou produced a prototypical essay-

marking component for Ceilidh using a variant of LSA [FL94].

2. Automated Assessment, Diagrams and Software Engineering 29

A third approach developed by Educational Testing Service (ETS) uses a hybrid model

that combines analysis for linguistic features using Natural Language Processing

techniques (NLP), together with statistical structure analysis. The criteria used in

marking within ETS include syntactic variety, discourse analysis and topical content

comparison [Edu02].

2.1.4.3 Diagrams and Graphics

Research that refers exclusively to the automation of assessment of student diagrams

is very limited. However, in subjects such as software engineering the use of visual

tools to promote learning has often been the subject of research.

Hirmanpour highlights the need for using diagrams in the teaching of software design

[Hi88]. The tool used in Hirmanpour’s work is a diagram editor that supports three

types of diagrams: dataflow diagrams, entity relationship diagrams and structured

charts.

Power gives an overview of a development environment called Designer that helps

students understand concepts of structured program design [Pc99]. Designer allows

the user to create and edit structure diagrams. On completion, Designer can translate

the diagrams and generate programs. Composed by process boxes, decisions, loops,

I/O boxes, and procedure calls, structure diagrams can be translated into control

structures. The system can be used to run programs or perform code walkthroughs

while allowing user interaction.

Hoggarth and Lockyer report on integrating Computer Aided Software Engineering

(CASE) tools with Computer Aided Learning (CAL) [HL98]. Their work involved:

� Attaching the diagrammatic facilities of a CASE tool to a CAL product

� Embedding CAL into a CASE tool

� Implementing a diagram comparison system

The diagram comparison system does not compare visible similarities but the internal

processing of two diagrams. It compares the internal processing, processing order and

the connections between processes. Before submitting the solution diagram, students

have to perform a symbol mapping between the components of their diagram and

2. Automated Assessment, Diagrams and Software Engineering 30

those of the model solution. Then the diagram comparison system finds the

differences between the two diagrams giving guidance and feedback to the student.

Hoggarth and Lockyer acknowledge the difficulty in building CAL systems that

include diagram entry facilities stating that: "By providing limited diagram presentation

facilities within a CAL system the student can view and appreciate the design and development

of system analysis and design diagrams. This is a difficulty for stand-alone CAL systems

because they need to have all the information that is to be presented previously defined, as they

cannot recognise the notation being used. This inflexibility requires a great deal of development

work to be done to create beneficial courseware material".

2.1.5 Summary

The first segment of this chapter introduced CAA and reviewed its relationship with

educational technology. Automated assessment is not only a solution to problems

imposed by increasing class numbers but also a pedagogically enhancing technology.

CBA is CAA with the added characteristic that the coursework’s solution is entered

online. CBA can be used for formative, summative or diagnostic purposes. It can be

divided into fixed and free response depending on the type of student response.

Exercises based on fixed response are authored without too much effort but are

limited in respect to the types of coursework that can be assessed. MCQs, simple text

or numeric questions and hotspot graphical questions belong to the fixed response

type of assessment. The assessment of programming, essays and diagrams belongs to

the free response type of assessment. Although research has been reported for CBA

for programming and essays, the subject of diagram-based CBA, in domains other

than software engineering, has not yet been documented. The next segment

introduces diagrams and examines their relationship to education and learning.

2.2 Diagrams and Learning

Combining CBA with exercises that have diagram-based solutions leads to the field of

diagramming. This subsection presents definitions, historical background and

highlights of the interests of the academic community in relation to diagrams. It also

makes a summary of the most common diagrams and reports the view of the

education community on the relationship between diagrams and learning.

2. Automated Assessment, Diagrams and Software Engineering 31

2.2.1 Diagrams

James Maxwell's definition of a diagram is: “a figure drawn in such a manner that the

geometrical relations between the parts of the figure illustrate relations between other objects”

[eb11]. Maxwell’s definition is general enough to subsume detailed definitions given

by various fields. For example, the rigorous definition of a diagram in mathematics

[Tk00] is radically different from the respective definition in architecture [EG97]. The

word “diagram” in origin is ancient Greek and is a composite word from the prefix

“dia” meaning “to”, and “gram” meaning “line”. Thus, the literal meaning is

to express using lines.

Dodson, acknowledging that there is no crisp definition on what is a diagram suggests

an informal generalisation: “Something is a diagram if it has perceptually distinct localised

parts, such as nodes and lines and uniform conventions of meaning apply to combinations of

these elements” [Dd99]. Dodson explains further that such elements can be:

� Nodes linked by lines

� Nodes in or overlapping other nodes

� Combinations of lines

� Labelling of elements by superimposed, adjacent or linked symbolic elements

� Items of the same colour, pattern, texture, and so on

According to Blackbell, diagrams are based in resemblance, metaphor and concrete

descriptions [Ba98]. Resemblance is the most naive view of diagrams in that they

simply look like the things they represent. Land maps, for example, belong to this

category because they are made using elements that have a direct geometric

association to the objects they describe. Metaphor is used to depict things that do not

exist physically, yet they exist in the imaginary world. Abstract concepts and structure

representations are examples of diagrams belonging to this category. Diagrams exist

also as concrete descriptions of abstractions of physical entities and express helpful

views on objects, relationships and processes of the world.

2. Automated Assessment, Diagrams and Software Engineering 32

Figure 2.5: Diagrams are between the worlds of text and pictures.

Diagrams communicate information that spans between text and pictures. Figure 2.5

illustrates this concept in a diagram that uses a horizontal axis to represent the

arbitrariness of diagrammatic representation. At the edges of the axis, a diagram can

be described as text or picture. For example, a photograph can be considered as a

diagram with a high degree of homomorphism between the representation and its

subject. Text can also be considered as a diagram that contains symbols positioned

and composed in a specific manner. To be widely comprehensible, most known types

of diagrams obey certain rules of notation.

2.2.2 A Short History of Diagrams

Diagrams have been used throughout history to represent topological maps,

geometrical concepts, religious and philosophical ideas, engineering plans and

scientific abstractions amongst many other things.

The earliest recorded diagrammatic representations were land maps. Maps maintain a

homomorphic relationship between the diagram and the physical space. Figure 2.6

shows a clay-tablet representing a map from the area of Ga-Sur in Mesopotamia,

which is 200 miles north of the site of Babylon. The tablet is dated 2500 B.C. [Bl85].

Diagrams depicting abstractions have also been used from ancient times. Geometric

diagrams have been found on Babylonian clay tablets that date from around 1700B.C.

[Mn01]. Figure 2.7 depicts a tablet that shows a procedure for calculating the diagonal

of a square with length of 30 units and a version of the visual proof for the

Pythagorean theorem.

2. Automated Assessment, Diagrams and Software Engineering 33

Figure 2.6: One of the earliest diagrams dating from 2500BC and its interpretation

Other occurrences of diagrams dating to ancient times have also been found in Egypt,

China, India and Greece. In Greece, the work of Pythagoras, Euclid and Archimedes

relied heavily on diagrams.

Figure 2.7: Babylonian tablet (1700B.C.) and the Pythagorean theorem

In the middle ages, diagrams have been used to represent philosophical concepts,

religious ideas and lineage hierarchies. Figure 2.8 depicts two diagrams from the

earliest books in print. The first diagram represents the four elements, and has been

published in the “De responsione mundi et de astrorum ordinatione” [Hi72]. The

second diagram entitled “tree of life” is a quite complex topological diagram that

appeared in print in Kircher’s work in 1652. It represented religious ideas based on

the old testament [Ka52].

2. Automated Assessment, Diagrams and Software Engineering 34

Figure 2.8: A diagram for the four elements (1482AD) and the tree of life (1652AD)

In the 17th century, the Cartesian coordinate system was conceptualised by Descartes.

Descartes and Fermat became the fathers of analytic geometry that uses algebra to

solve geometrical problems. This was a major step in a perception shift from

geometry to arithmetic. Calculus profoundly aided scientific discoveries in physics

and chemistry. This led to an increasing number of abstract diagrams recorded

throughout the 18th century. Euler used circles to solve reasoning problems involving

relationships between sets [El61]. Euler circles used enclosure, exclusion and partial

overlap to represent the set related notions of containment, disjointness and

intersection. Venn modified Euler circles by adding to the notation all the possible

relationships between sets and by introducing shading for empty sets [Vj80]. Peirce

proposed extensions to Venn diagrams and created existential graphs [Pc33].

In the 20th century, the number of types of diagrams has increased rapidly. With the

advancement of computers, graphical user interfaces, CAD/CAM systems and

diagram editors, diagrams are used in almost every known field. Research into

diagrams as a mean of communication has also increased. Friendly and Denis

documented an illustrated chronology of innovations in the history of thematic

cartography, statistical graphics and data visualisation in [FD01]. The next section

describes the interest of the disciplines that have strong links to research in

diagramming.

2. Automated Assessment, Diagrams and Software Engineering 35

2.2.3 Research and Use of Diagrams Across Disciplines

The topics of research presented to conferences for diagrams relate to numerous and

broad areas of science, humanities and art. For example, in applied psychology, the

interest in diagrams is in analysing how they relate to cognition. In cognitive science,

studies are being made in models of diagrammatic reasoning and understanding. In

education, diagrams are studied as tools that improve learning. History and

philosophy of science examine past discoveries in relation to diagrams and how these

influenced scientific thought.

Diagrams are widely used in computer science for software specification, for solving

computational problems and for visualisation. The flowchart diagram was

conceptualised by Von Neuman, who created a simple flowchart notation to visualise

algorithms [GV47]. From the early days of computing, the flowchart became the de

facto standard in illustrating algorithms [Rr63]. Among the hundreds of known

diagram notations are data-flow diagrams (DFD’s) [GS79], database schemas [BLN86],

entity relationship diagrams (ERD’s) [Cp76], [JN83], structure diagrams and process

diagrams [MM85], Nassi-Schneiderman diagrams (NSD’s) [SN73], pert charts [MP70],

and object diagrams [RBP+91]. For solving theoretical problems well known diagrams

include statecharts [Hd88], petri nets [Pc65], and state transition diagrams [BGK+96].

Diagrams to visualise data include the bar and pie chart, the scatter plot, and many of

the other commonly used representations. Many types of diagrams exist to represent

graphs and tree structures. Sixty graphical representations are illustrated in the work

of Lohse et al [LBW+94].

In computer science, studies are made on software and algorithms for editing

diagrams. A significant volume of work has been carried out in areas such as

automatic layout and visualisation [HMM00], diagrammatic reasoning [Kz94] and

software development for diagram editors.

Engineering disciplines use diagrams extensively. In electrical engineering, circuit

diagrams for analogue and digital components are a major form of communicating

design ideas. In mechanical engineering, the technical drawing describes in detail

blueprints for manufacturing artefacts. The bond diagram in chemistry is commonly

used to aid the understanding of the structure of matter.

2. Automated Assessment, Diagrams and Software Engineering 36

1. Flowchart

2. Data-Flow

3. Database Schema

4. Entity-Relationship

5. Structure

6. Process Diagram

7.Nassi-Schneiderman

8. Pert

9.Object

10. State Chart

11. Petri Net

12. State Transition

13. Graph – Tree

14. Bond

15. Logic Circuit

16. Analog Circuit

17. Arrows and Cells

18. Concept Map

19. Mind Map

20. Timeline

Figure 2.9: Examples of twenty types of commonly used diagrams

Hundreds of technical diagram notations exist for engineering. Descriptions for the

most popular notations can be found in databases of standards such as ISO [ISO00],

and ANSI [ANSI00].

Diagrams with less formal notations are commonly used to describe concepts and

their relationships, hierarchies, time events etc. Concept maps [GS95], mindmaps

[Tb93], and timeline diagrams are examples of types of such diagrams. Figure 2.9,

illustrates examples of twenty of the most commonly used types of diagrams.

2. Automated Assessment, Diagrams and Software Engineering 37

2.2.4 Diagram Taxonomies

The available studies that categorise diagrams are both domain dependent and

diverse. Examples of such studies are given by Martin and McClure [MM85], and

Wieringa [Wr98] on diagrams for software engineering, Burnett, Goldberg, and Lewis

[BGL+95] and Burnett and McIntyre [BM95] on visual programming languages, and

Richards [Rj84] on illustrational diagrams for graphic design. Further examples of

diagram taxonomies related to education are given by Goldsmith [Ge84] and related to

psychology by Narayanan [Nh98].

Blackwell and Engelhardt, after surveying a variety of perspectives and criteria in

diagram taxonomies, have proposed a set of taxonomic dimensions that can be used as

the basis for new taxonomies of diagrams and as a reference point for comparisons

among the interests of the academic community in diagrams [BE98], [BE01]. Their

taxonomy of taxonomies has six taxonomic dimensions: the representation, message,

relation between representation and message, task and process, context and

convention, and mental representation. Each one of the taxonomic dimensions

represents a category of interests in research related to diagrams. Figure 2.10 depicts a

mindmap of Blackwell’s and Engelhardt’s taxonomic dimensions for the study of

diagrams.

The representation of diagrams is a subject that has been studied profoundly in

graphic arts and design. From this perspective, a diagram is a composition of visual

elements such as points, lines, text, and of various other shapes put together in an

organised manner. The graphical domain defines the graphical vocabulary and the

graphical structure defines the way relationships are illustrated.

The message that underlies a diagram has informational structure that can be

described by its relational properties and is constrained by ontological categories such

as space, time, and quantity.

The relation between representation and message concerns the association of the

graphical structure to the message. This association can be seen as a correspondence

of the elements of the message to those of the graphical structure. Diagrams in which

the elements of the message correspond directly to the graphical structure of the

diagram have a higher degree of pictorial correspondence.

2. Automated Assessment, Diagrams and Software Engineering 38

1. Representation

2. Message

3. Relation between
Representation and Message

4. Task and Process

5. Context and Convention

6. Mental Representation

Taxonomic
Dimensions

The graphic domain
 (graphic vocabulary)
Graphic structure
 (visual/spatial relations)

Information structure
 (relational properties)
The information domain
 (ontological categories)

Pictorial correspondence
 (realistic/abstract)
Analogical correspondence
 (structure mapping)

Information processing
 (perception and problem solving)
Tools
 (interaction with the representation)

Communicative context
 (roles in discourse)
Cultural conventions
 (society and representation)

Mental imagery
 (nature of internal representations)
Interpersonal variation
 (differences between people)

Figure 2.10: Taxonomic dimensions for taxonomies of diagrams

The tasks and processes involved in creating, interpreting and modifying diagrams are

the concern of work that studies the use of diagrams. These processes can be internal

cognitive processes or can be dependent on software tools.

The context and conventions underlying diagrams are the concern of work that

analyses the cultural and communicative background in relations to the diagram and

to its sociological effects. Finally, research into mental representation studies the

nature of the differences between the diagram and its internal interpretation by the

mind.

2.2.5 Using Diagrams for Education

Comparisons of verbal and visual tasks have shown that human capabilities differ in

the way they are distributed throughout the brain [Tb93]. Different people choose

different strategies to accomplish the same tasks. Differences exist also between the

strategies that individuals choose in visual reasoning tasks. These strategies are

significantly affected by education, expertise and culture.

2. Automated Assessment, Diagrams and Software Engineering 39

Advocates of diagrams have suggested that the right hemisphere of the brain is

"needlessly at rest and “under-utilised" when using text-only notation for descriptions.

Some simple visual tasks require more time when carried out by the left hemisphere of

the brain. There are tasks where verbal and visual information can be combined.

Memory improves when an image is associated with a task. Larkin and Simon state

that diagrams are “computationally efficient, because search for information can be indexed

by location; they group related information in the same area. They also allow relations to be

expressed between elements without labelling the elements” [LS87].

In the work of Brna, Cox and Good [BCG97] three main issues are identified when

considering the use of diagrams in education:

� The balance between making things easy and helping students to learn

� The reuse of the learner’s diagrammatic knowledge

� The burden of learning unfamiliar representational systems while learning

conceptually new subject material

On the first issue, Brna et al, after presenting a survey of the work on the cognitive

analysis of diagrams on learning conclude that it is unclear “whether we should

compensate for, or teach to cognitive style differences”. Citing Salomon, Brna et al explain

that although ``the high-verbal learner who is weak in visualization might be supplied with

extensive diagrams and left to generate his own verbal representations'', Cox, Stenning and

Oberlander have shown that subjects classed as good diagrammatic reasoners perform

better than poor diagrammatic reasoners. Brna et al suggest that the answer to two

questions is fundamental in tackling the first issue: “What tasks do diagrams make

easier?” and “What are the benefits of making tasks easier?”

On the second issue, Brna et al, explain that learning a diagrammatic method depends

on many factors such as the task, the learner’s experience, the characteristics of the

diagrammatic method and the physical and social context. They state that “Many of

the problems in becoming an effective ‘diagrammatic reasoner’ can be viewed in terms of how to

generalise from experience and transfer skills learned in one context to another”, and conclude

with two questions that must be addressed: “Can we provide a convincing account of how

2. Automated Assessment, Diagrams and Software Engineering 40

learners gain a high level of competence at operating with relatively unfamiliar external

representation systems?” and “How important is the translation skill ?”.

On the third issue, Brna et al explain that students can be excessively burdened as

diagramming methods are typically taught together with the subject. Students can get

confused by the two representations and “commit to an interpretation of the

representational system (or even some specific representation) which may be inconsistent or

flawed in some way in relation to the intended meaning”. An important question must be

addressed for this issue: “How can we partition the cognitive load in a sensible way?”.

In specific subjects, the results for the use of diagrams on learning are extensive.

Ackermann and Pope have presented findings from an experiment that aimed to

determine the suitability of diagramming tools as a means to improve learning in

software design. In their view, diagrammatic tools can be extremely useful. Their

results indicate a definite improvement in learning. Students found the tools useful

and favoured this approach [AP89]. Jeffrey reports on the experience while using

petri-nets to teach concept in operating systems. Although it takes one or two lectures

to teach petri nets, Jeffrey argues that the illustration of OS concepts using such

diagrams promoted deeper understanding [Jj91]. Clarke proposes Possible Model

Diagrams as an effective tool to teach logic to undergraduate students. In his view,

diagrams are simpler to remember because of their visual appeal [Cm93].

2.2.6 Summary

Section 2.2 introduced diagrams, presented interesting historical facts and illustrated

some of the most commonly used diagrams. Research on diagrams has considerably

risen in the last half of the 20th century. The interest in diagrams varies to the degree

that there is a proposition of creating a discipline for the study of diagrams. In order

to classify the diversity of interests, Blackwell’s taxonomy of taxonomies for research

on diagrams has been overviewed. According to the education technology

community, diagrams present unique learning advantages and offer many research

opportunities.

2. Automated Assessment, Diagrams and Software Engineering 41

2.3 Software Engineering

Systems for both CBA and diagram editing are complex software artefacts. The design

and implementation of complex software is a concern that belongs to the field of

software engineering. As a discipline, software engineering studies the process of

managing the lifecycle of software. This lifecycle, according to Sommerville, includes

the stages of software specification, development, management and evolution [Si96].

Schach compliments this view by highlighting that the aim of software engineering is

the production of quality software, delivered on time, within budget, and satisfying

users' needs [Ss93].

To simplify complexity and to increase software maintainability and reusability,

object-orientation employs a range of ideas such as encapsulation, modularisation,

abstraction and hierarchy. Object-orientation promotes the notion of maintaining

software on a design level as a means to facilitate reuse, maintainability and change.

Concise reviews of object-orientation are given by Korson and McGregor [KM90].

Comprehensive surveys examining directions in research on object-orientation are

given by Guerraoui [Gr96]. Good traditional textbooks include Booch [Bg91], Coplien

[Cj92], Rumbaugh [RBP+91], Meyer [Mb88] and Wirfs—Brock, Wilkerson and Wiener

[WWW90].

The problem with object-orientation is that the design and implementation

perspectives are inherently inconsistent. This causes the slow and iterative nature of

the development process and the increased demands on testing and understanding.

However, object-orientation does not produce reusable parts without careful

engineering for reuse. The reuse community has suggested domain engineering as a

technique to design reusable software [CE00].

The decade of the 90’s saw the introduction of design concepts such as software

patterns [GHJ+94], maintenance techniques such as refactoring [Op92], [Fm99], and

theories on the building of object-oriented frameworks to derive families of related

applications [Lt95], [JFS99]. The importance of a sound architecture, with low

coupling and high coherence between its parts, has often been appreciated as a key

factor in software quality [Ra96].

2. Automated Assessment, Diagrams and Software Engineering 42

A simple definition of a software pattern is given by Schmidt: “A pattern is a recurring

solution to a standard problem” [SJF96]. Early work in software patterns includes that of

Gamma, Marty and Weinand [GMW88], Vlissides [Vj90], Coplien [Cj92], and Coad

[Cp92]. At the end of 1994, the “Design Patterns” book by Gamma et al introduced

patterns to the software community [GHJ+94]. Each design pattern captures the intent

behind a reusable solution to a commonly recurring design problem by specifying the

objects, classes, collaborations and interactions that are involved. Design patterns not

only promote reuse of designs that have resisted the test of time but also propose a

common vocabulary to communicate software at a much higher granularity than that

of objects, classes, operations and attributes.

Object-oriented frameworks encapsulate design decisions for a particular domain and

support reuse not only of implementation but also of design and analysis. Johnson

gives two definitions: “A Framework is a reusable, semi-complete application that can be

specialised to produce custom applications” and “A framework is a set of classes that embodies

an abstract design for solutions to a family of related problems”[JFS99]. Frameworks are

designed to capture the abstract and reusable parts of a domain so that new software

can be developed for that domain simply by specialising the framework. Frameworks

are represented by a set of interfaces, abstract classes and collaboration specifications

of their instances. Applications can be developed using a framework by overriding,

parameterising, configuring and modifying. Johnson states “frameworks are an object

oriented reuse technique” [Jr97].

The benefits of using frameworks are improved modularity, reusability, extensibility,

and control inversion. Frameworks are usually complex and hard to understand in

terms of classes and objects. The important classes are the abstract classes that denote

the responsibilities of the various class hierarchies. The development process of a

framework is highly iterative and requires a deep understanding of both the

application domain and of object-orientation. Software patterns are used explicitly in

frameworks not only to reuse proven solutions, but also to document the design of the

framework and help to communicate it to other developers. New applications

produced using the framework often need to subclass classes of the framework and

specialise behaviour.

2. Automated Assessment, Diagrams and Software Engineering 43

2.4 Summary

This chapter introduced the areas of CBA, diagramming and software engineering.

CBA is a field of learning technology that is concerned with the online assessment of

student work. The benefits of using CBA are both practical and pedagogic. CBA can

be used for formative, summative or diagnostic purposes. The type of the student

response to the system divides CBA systems into fixed and free response. Multiple-

choice questionnaires, simple string/numeric answer exercises and hotspot graphical

exercises are all types of exercises that belong to the fixed response type of CBA.

Programs, essays, and diagrams belong to the free response type of CBA. Many

systems exist for fixed response CBA whereas a few prototype systems have been

reported for free response coursework.

To combine diagrams with assessment section 2.2 reviewed the area of diagramming.

In order to classify the diversity of research interest in the diagramming literature,

Blackbell’s taxonomy of taxonomies has been discussed. Diagrams present unique

learning advantages according to the educational technology community and should

play a larger role in education.

Finally, the field of software engineering has been briefly reviewed, and software

patterns and frameworks were discussed in the context of software development.

Chapter 3,

Existing work: Ceilidh and Diagram Editors

Ceilidh

Diagram Editors

Ceilidh and Diagram Editors

Overview
History
Courses
Users
Architecture
Interfaces

Marking
In General
Programming Courses

Administering
Experience

History of Diagram Editors
Types of Diagram Editors
Problems in Developing Diagram Editors

Approaches
Multi-Domain
OO Frameworks
Generators

“Civilization advances by extending the number of important operations

which we can perform without thinking about them”

Alfred North Whitehead, an Introduction to Mathematics

3. Existing work: Ceilidh and Diagram Editors 45

Introduction

The previous chapter introduced CBA, diagramming and software engineering as

subjects relevant to the development of diagram based CBA. This chapter reviews

existing work on the Ceilidh CBA system and on systems that address the editing of

user-specifiable diagram notations.

Section 3.1 begins with a brief historical overview of the Ceilidh CBA system and an

explanation of its notion of a course. A review follows, explaining how the supported

functionality is distributed into five types of responsibilities that represent five user

views. Ceilidh’s initial objectives have been to create an extensible and portable CBA

system that supports multiple courses, automatic marking with feedback, multiple

interfaces and remote learning. These objectives have been supported by principal

decisions throughout Ceilidh’s design and are further discussed.

Section 3.2 introduces graphical diagram editors and reviews the software engineering

difficulties concerning their development. The most notable approaches to developing

diagram editors are surveyed and categorised into multi-domain diagram editors,

diagram editor frameworks and diagram editor generators. The motives, aims and

principles of each approach are examined.

3.1 The Ceilidh CBA System

The Ceilidh system was originally implemented to address the practical problems

involved in the teaching of programming courses to large numbers of students. The

problems, as discussed in chapter 1, occur in the presentation of material, in the

administration of the course, and most importantly in the assessment of student work.

Ceilidh supports features to address each of these three problem areas.

For the presentation of information to the students, Ceilidh implements a hierarchical

course structure with courses, units and exercises in which lecture notes, tutorials and

other course related information can be organised and published. Ceilidh keeps

students informed of their marks and returns feedback for submitted coursework.

3. Existing work: Ceilidh and Diagram Editors 46

For the administration and management of courses, Ceilidh assists in a number of

ways. Firstly, it defines a secure and on-line process for the creation and submission

of student coursework. Secondly, it supports customised views for its users,

distributing the various responsibilities amongst them. The view of the teacher

supports functions for monitoring individual and overall student progress as well as

individual and overall exercise progress. Thirdly, Ceilidh handles the archiving of

submitted student work, and manages the intercommunication between users. In

addition, Ceilidh supports features for plagiarism detection.

For the automatic assessment of student work, Ceilidh has put forward a generic

technique that can be applied to the development of both fixed and free response

types of assessment. By introducing the concept of marking tools, Ceilidh supports the

development of a variety of CBA exercises. Marking tools embody programs that

examine a specific quality in the submitted coursework and return marks and

feedback to the invoker. Marking tools have been implemented in Ceilidh for

assessing courses in programming languages, multiple choice questionnaires,

question/answer exercises, single sentence /word answers and essays/reports.

Although the presentation of information to the students is an important aspect of the

learning process, Ceilidh has concentrated primarily on the automatic marking of

student work and secondly on the administration of course modules.

3.1.1 Ceilidh’s Development History

Foxley conceptualised, designed and implemented the original Ceilidh in 1988

[BBF92]. Figure 3.1 presents a timeline diagram that highlights the most important

developments in Ceilidh’s history. Ceilidh was initially tested at the University of

Nottingham for four years supporting the teaching of a course using the C

programming language. In 1992, with funding from the Teaching and Learning

Technology Program (TLTP), a second release became publicly available to all

academic institutions. Ceilidh’s second version added more features, a C++ course

and increased security.

In 1995, a final release added a statistics package for the monitoring of various aspects

of the course, an X-window front-end and a secure web interface for all user views, as

well as several new courses.

3. Existing work: Ceilidh and Diagram Editors 47

Figure 3.1: Ceilidh’s development timeline

In 1996, according to a log analysis by Foxley, Ceilidh had been used by

approximately 220 universities in more than 30 countries [FHG96]. Among the

academic institutions that contributed new courses, the most notable are Heriot-Watt

University with an SML course, Royal Holloway University with a Pascal course,

Helsinski Technical University with a Fortran course, Ulster University with a

Modula2 course and Liverpool University with an SQL course. Additional courses,

have been implemented at the University of Nottingham for Prolog [MGC98], for the

Z specification language [FSZ97] and for UNIX based software tools [FHG96]. Luton

University, Sheffield Hallam Polytechnic, Manchester Metropolitan University, Cardiff

University, Rotterdam University and Ngee Ann Polytechnic have been involved in

various aspects of developing extensions for Ceilidh. Detailed historical information

for the development of Ceilidh can be found in [BBF+93] and [FHT98].

3.1.2 Courses in Ceilidh

A Ceilidh course has a hierarchically organised file structure that contains units and

exercises. Figure 3.2 illustrates a course structure. Ceilidh can host multiple courses

simultaneously. Courses are authored by course developers who are familiar with

Ceilidh’s formats, tools and file structures. Every exercise in the hierarchical course

structure has associated files for publishing information, such as lecture and tutorial

notes, files used to configure the automatic assessment, such as marking properties

and testing data, and files that are specific to the running course, such as student

marks and solutions.

3. Existing work: Ceilidh and Diagram Editors 48

As a course progresses, exercises are assigned to students as formal coursework.

Students have to submit solutions for their exercises within given deadlines after

which no submission is permitted. Upon submission, marking is automatically

carried out. This is accomplished with the use of marking tools, which represent

different aspects of the exercise’s solution quality such as, for example in the case of

programming courses, metrics for the readability of source code. Instant feedback is

returned by the system on the student's submission which reveals in detail the

strengths and weaknesses of the solution.

Figure 3.2: The structure of a course in Ceilidh consists of units and exercises

A new course in Ceilidh can belong to any of the following types of supported

courses:

� programming languages

� multiple choice questionnaires

� question/answer exercises

� single sentence /word answers

� essay/report

Each type of course has its own marking tools and data formats. Comprehensive

guides for developing courses include [BBF96] and [BBF+96]. New types of exercises

can also be created, however not without some considerable programming involved.

3. Existing work: Ceilidh and Diagram Editors 49

The development of exercises on courses that have already been implemented needs

significantly less effort.

3.1.3 Ceilidh’s Functionality and Users

Ceilidh distinguishes between five roles for its users with respective responsibilities:

students, tutors, teachers, developers and administrators. Each type of user has their

own interface to the system for every course level. Every user interface has a system, a

course, a unit and an exercise level that offer functionality specific to the

responsibilities of each user as well as to the type of exercise.

Student

Tutor
Teacher

Developer

Administrator

Ceilidh User

System View
documents
MOTD

Course View

notes
summary
MOTD

previous
work
marks

Unit View
notes
summary

Exercise

View

question
skeleton
marking info

previous
work
marks

Setup
Develop
Submit

Execute - Simulate
Interactively
Using marking info
Teacher's solution

enquire by emailSystem

Course

View Student
work
marks
statistics

Register Students
Check Overall State

Unit

Exercise

View

Student
solutions
marks
statistics

Tutor Help
Plagiarism Reports

Mark Solutions
automatically
manually

Check Missing Solutions

System

Add/Delete
students

tutors
teachers

View
Audit trails

Lists with Users

CourseEdit
MOTD

Properties

UnitEditProperties

Exercise
Edit

Tutor Help
Exercise Question

Properties
Marking Data

Check Plagiarism Results

System

Course
Create

Add/Remove

Unit
Create

Add/Remove

Exercise
Copy

Author

System

EditMOTD

Add/Delete All Users
Check Error Logs

Courseinstall

Unit
Exercise

Figure 3.3: Ceilidh user-responsibilities for every course level

Without taking into consideration the specific tasks defined by the type of exercise,

figure 3.3 illustrates the available functions for each type of Ceilidh user. Ceilidh’s

functionality on each user-view is additive: the view of higher-level users incorporates

the functionality of the views of the lower level users. For example, a teacher can do

3. Existing work: Ceilidh and Diagram Editors 50

everything a tutor and student can, and an administrator can do everything all other

users can.

Students use Ceilidh’s course levels to navigate through the course structure, to study

the available reading material, and to get overall information about their previous

work. At the exercise level, Ceilidh has options for setting up and developing an

exercise, for executing and testing the solution, for submitting it and for checking

previous exercise work and marks. Students can enquire about aspects of the course

using email. As each course may be associated with specific tasks related to the

development of respective coursework, the exercise level view is customised to the

exercise type. Options to execute or test the solution can be configured. Tutors are

assistants to the teacher responsible for the course. Groups of students are assigned to

each tutor. The tutor’s responsibility is to supervise, support and guide their assigned

tutees, to administer student registration and to monitor progress. Tutors can instruct

Ceilidh to re-mark a submitted solution and to return a full analysis of the results.

They can also mark a solution manually and update Ceilidh to reflect the new mark.

Each course in Ceilidh needs to be associated with a teacher. The main responsibilities

of a teacher include managing the registration of users on the course, providing and

updating course material, editing exercise specific properties to suit assessment

preferences, and in general monitoring and supervising all the aspects of the running

course. Teachers obtain feedback for their teaching from tutors. They can also

monitor exercise and student overall results in detail. Teachers are also responsible for

ensuring the security of the marking by setting and checking audit trails and executing

plagiarism detection tools.

Developers are users who build and extend Ceilidh courses. The developer’s view has

functions to create and edit course structures and to author all the appropriate files for

an existing type of exercise such as programming, essay, question/answer, MCQs etc.

Often the development of a new type of exercise can be based on configuring generic

tools for existing courses that process text-solutions. In domains where Ceilidh’s

generic marking tools are unsuitable, new marking tools need to be developed.

Administrators in Ceilidh have the responsibility of installing Ceilidh, adding ready-

made courses, administering the registration of all users and checking errors. They

also supervise networking and execution performance, and fine-tune the system.

3. Existing work: Ceilidh and Diagram Editors 51

3.1.4 Ceilidh’s Architecture and User-Interfaces

Ceilidh’s design objectives have been to support multiple courses, automatic marking

with feedback, multiple interfaces and remote learning, whilst maintaining

extensibility and portability [BBF+94]. Ceilidh took an architectural approach based

on three layers in order to separate the data from the logic and the user-interfaces.

Figure 3.4 depicts the three layers as they relate to Ceilidh’s users.

Figure 3.4: Ceilidh’s three-layered architecture as it relates to its users

The database layer includes information stored for courses, such as authored material

for notes and exercises, and data archived for the year such as user lists, submissions

and marks, along with other transient properties and configurations. The structure of

the information that constitutes the exercise material depends on the type of

assessment. For example, programming exercises have different organisation than

exercises based on MCQs. Courses can be developed for any exercise type supported

by Ceilidh. The marking feedback is part of the properties of the exercise and is set by

the exercise developer.

The tools layer consists of executable programs that are dependent on the formats of

the exercise files within the database layer and inter-communicate through predefined

protocols. The purpose of the tools layer is to increase extensibility. Many tools have

been developed since Ceilidh’s initial release providing functionality and metrics in

new domains. Ceilidh’s latest version includes 70 tools, 51 of which are Unix shell

scripts and 19 are programs written in C [BBF+94].

3. Existing work: Ceilidh and Diagram Editors 52

The user-interface layer accesses the tools layer in order to make the functionality

available. Separating the user-interface from the tools made easier the development of

new views. Four types of interfaces have been developed for all users:

� Dumb Terminal Menu Interface: This is a simple text-based interface, in

which users select commands from a text menu. It was built to support

courses with a large number of novice students. At the time of developing the

dumb terminal menu interface old hardware resources had to be used simply

because there where not enough graphics-based terminals available. Figure 3.5

depicts the student’s view for the course and exercise levels.

Figure 3.5: Student’s view of Ceilidh’s dumb terminal interface

� Command Line Interface: Every menu action from the Dumb Terminal Menu

Interface is available as a shell command, which offers added flexibility, as it is

possible to execute Unix commands or logout at any time without affecting

Ceilidh’s state. Experienced users prefer to issue commands instead of using

the menu for increased speed.

� X-Window Interface: The X-Window Interface was developed using the

OSF/Motif 1.2 toolkit [Osf91] and was the first user interface that used a

graphical environment.

� World Wide Web Interface: This interactive HTML-based interface is

generated automatically for efficiency, and is stored on a web server [FNT97].

3. Existing work: Ceilidh and Diagram Editors 53

Secure CGI scripts written in UNIX shell script are used for user identification

and coursework submission [FHT+98].

Figure 3.6: Student’s view of Ceilidh’s X-window and Web interface

Figure 3.6 illustrates the exercise view of a programming course in C++ as it is seen by

students on an X-window and web user interface.

3.1.5 Automatic Assessment in Ceilidh

Ceilidh implements a mechanism to perform automatic assessment in which the

student solution is examined by marking tools. Marking tools are specific to the type

of the course and can be further configured to the requirements of a specific exercise.

Upon execution, marking tools evaluate specific aspects of the quality of a solution

and return results to Ceilidh for further processing. After the execution of all the

marking tools that participate in the marking of a student solution, Ceilidh calculates

the overall mark and returns feedback to the student.

The scheme for invoking the marking tools that mark a student solution is described in

a marking action. A marking action is a configuration file that dictates how each

exercise is automatically assessed. It contains invocations of marking tools associated

with weights that represent the highest mark that a marking tool can return. The sum

of all the weights in a marking action represents the highest mark that Ceilidh can give

for a single exercise, which typically has the value 100.

3. Existing work: Ceilidh and Diagram Editors 54

The concept of modelling the marking scheme, using a marking action, is fundamental

in Ceilidh because it allows the configuration of the marking on a per exercise basis.

For every exercise a marking action describes the highest level decisions of how the

solution is going to be marked. For assessment based on fixed response, available

marking tools carry out a simple matching search between the student solution and

the model solution. For free response based assessment, the available marking tools

require further configurations to the domain of the course and the specifics of the

exercise. These configurations are specified using regular expressions in the form of

oracles, which are text-checkers representing simple marking criteria.

From all types of exercises that Ceilidh supports, the one that has similarities with

diagram-based assessment is the type for programming. Both programs and diagrams

have explicit structure. The next section discusses how the programming type of

exercises is designed to allow the assessment of new programming languages, and

how the general marking tools facilitate the authoring of new exercises.

3.1.6 Assessing Programming Coursework

Ceilidh distinguishes between dynamic marking tools that test the runtime behaviour

of programs and static marking tools that perform text based matching on the source

code [ZF91]. Available dynamic marking tools include those that assess the execution

correctness and those examining the efficiency of the submitted program with respect

to the exercise’s question. The available static marking tools are comprised of tools

that assess the typographic and structure correctness, the algorithmic complexity and

other measures related to the exercise features of the program.

Features 10/100

Structure 10/100

Efficiency 5/100

Complexity 5/100

Correctness 50/100

Typography 20/100

Overall Mark
100/100

Feature 1
Feature 2
Feature 3

Test Data 1
Test Data 2
Test Data 3

Figure 3.7: A typical marks distribution among various metrics for a C exercise

3. Existing work: Ceilidh and Diagram Editors 55

Figure 3.7 illustrates a typical distribution of marks described within a marking

scheme for exercises based on the C programming language.

3.1.6.1 Dynamic Metric Tools

The dynamic metric marking tools execute the student’s program against

predetermined sets of test data and validate the output. As several forms of output

can be considered valid according to the stated question, the responsibility of

describing patterns of solutions lies with the developer of the exercise. In order to

achieve this, Ceilidh developers have to use oracles according to their anticipation for

possible weaknesses in student solutions.

Oracles check the output for the presence or absence of a certain token or combination

of tokens. Each program would typically undergo several dynamic tests, with each

test typically involving several regular expressions. Every oracle has an associated

weight that might or might not be scaled, according to Ceilidh’s mark scaling

configuration.

Other dynamic metrics are based on common profiling techniques. During the

execution of a program against sets of test data, programs can be profiled using tools

similar to the UNIX tcov tool [DS98]. The tcov tool is a profiler that returns an

execution count for every section of the program, a summary of the sections with the

maximum counts and a summary of any non-executed sections.

3.1.6.2 Static Metric Tools

Static metric tools analyse the student’s source code for typography, complexity,

program structure, and features specific to the exercise.

Typography investigates the readability and maintainability of source code. Typical

typographic metrics evaluate the presence and usage of comments, the preferred

layout of braces, square and round parentheses, the length of identifiers, the ratio of

white space to other characters and other known aspects of the typographic quality of

programs. Table 3.1 lists some of the most notable typographic metrics.

3. Existing work: Ceilidh and Diagram Editors 56

Typographic Metric Typical Value for C
Percentage of blank lines 15%-30% blank

Average characters per line 15-30 cpl

Percentage of average white space per line 10-30% blank

Average identifier length 5-15 characters each

Percentage of names with good length 70%-100% reasonable length

Percentage of comment lines 10%-60% lines to be comments

Percentage of chars in comments 10%-60% of source’s length

Percentage of indentation 100% indentation

Percentage of indent errors consisting of braces 100% indentation

Percentage of indent errors consisting of brackets 100% indentation

Percentage of indent errors consisting of parenthesis 100% indentation

Percentage of uncommented closing brackets 100% comments

Table 3.1: Ceilidh’s typographic metrics

Several marking tools have been implemented to examine the source code complexity

using measures, like software science proposed by Halstead [Hm77] and cyclomatic

number designed by McCabe [Mt76]. Other metrics include techniques proposed by

Van Verth [Vp85], Henry and Kafura [HS84] and Oviedo [Oe80]. These metrics check

the frequency of occurrence of various programming constructs and compare it with

the model solution. Table 3.2 lists some of the most used in Ceilidh complexity

metrics.

Program Complexity Metrics
Methods of types & data declarations

Reserved words, include files & literals

Assignment statements & complexity of expressions

Library functions & function calls

Operators, conditional statements (including their depth), loops (inc. depth)

Maximum depth of braces, square brackets and round brackets

Table 3.2: Ceilidh’s program complexity metrics

Program structure metrics rely heavily on external tools such as the standard Unix C

3. Existing work: Ceilidh and Diagram Editors 57

utility lint and variants for other languages, which comment on program source code.

The student’s mark is based on the occurrence or absence of possible problematic

aspects of the source code. Table 3.3 illustrates the most notable program structure

metrics.

Program Structure Metrics
Variable assigned / defined / declared but never used

Variable undeclared / re-declared previously as different kind of symbol

Variable used before set

Value computed / returned by a function never used

Value computed / returned by a function sometimes used

Statement not reached / with no effect

Assignment of integer from pointer lacks a cast

Float or double assigned to integer data type

Comparison is always 1 due to limited range of data type

Data definition lacks type or storage class

Table 3.3 Ceilidh’s program structure metrics

Feature metrics are metrics that are specific to each exercise. They are used to ensure

that the submitted solution uses the current week’s newly introduced concepts. Table

3.4 list some examples of program features metrics.

Program Features Metrics
Numeric denotations which should have really been set as constants

Language specific features (e.g. use of switch statements, overloading, inline etc.)

Non-use of preferred denotations (e.g. “<=99” instead of “<100”)

Definition of specific ASCII characters by integer detonations (e.g. 64 vs. 0100 (octal))

Table 3.4: Examples of Ceilidh’s features metrics

Ceilidh developers use the existing marking tools to create new exercises in various

programming courses. Among the available marking tools for programming

languages, Ceilidh offers 120 single measurements and supports the creation of new

ones. The design document for Ceilidh [BBF+94] describes all the tools and oracles.

3. Existing work: Ceilidh and Diagram Editors 58

The developer’s guide for Ceilidh [BBF96] gives the details for developing exercises

and configuring each of the available measurements.

3.1.7 Administration and Management in Ceilidh

Administration responsibilities in Ceilidh are distributed to tutors, teachers,

developers and system administrators. Facilities exist to update course information,

manage user registration, monitor progress, check plagiarism reports and manage

audit trails. Tutors and teachers share the responsibilities of administering Ceilidh on

a per semester and course basis.

Typically, the teacher sets a number of exercises to open on a weekly basis. Exercises

might be in any of five states: open, late, closed, private or public. The first three states

refer to the exercise’s availability to submit, and the last two on the visibility of the

exercise’s solution. When an exercise is set as public, its solution is available to the

students for viewing.

Monitoring facilities are available for many aspects of the running of a Ceilidh course.

Tutors monitor their assigned tutees and teachers monitor the overall class.

Monitoring facilities support queries to find specific and overall results in respect to

students, exercises and courses. Results can be illustrating not only an overall mark

but also the contribution of each marking tool and oracle. This helps teachers to

acquire an understanding of the specific and general weaknesses of the delivery of the

course and subsequently to introduce corrective measures. Ceilidh also supports

queries to find missing students or submissions and to automatically send an email to

the tutor responsible for the student.

Students may submit a solution to an exercise several times. The number of allowed

submissions along with the enforced time between submissions is a property of the

exercise that must be set by the teacher before opening the exercise. Typically, three

submissions are allowed per exercise with five minutes enforced delay between

submissions. More submissions together with instant feedback on the solution

weaknesses result in higher than normal overall marks. As the distribution of marks

has to agree with departmental policies, Ceilidh scales the results to a suitable

distribution. The configuration of the mark scales is based at the course level and is set

by the teacher at the end of the course.

3. Existing work: Ceilidh and Diagram Editors 59

Automatic plagiarism detection in Ceilidh is initiated either automatically at the

closing of an exercise or manually by the teacher. The plagiarism detection tool

compares every student solution with each of the other student solutions. The

comparison uses a number of techniques to improve detection. Firstly, file attributes

and contents are checked to find a percentage of similarity. Secondly, for exercises in

programming languages, comments are removed, variables are substituted, and a

consequent comparison takes place.

3.1.8 Experience Using Ceilidh

Foxley et al have described in [BBF+93], [FGZ+93], [BBG+93], [BBF+95], [FHT98] and

[FHT+99] the experience accumulated over the years of using Ceilidh. Sources of

feedback include results from questionnaires given every year to all the types of users,

informal discussions with students and staff, studies of statistical data, reviews of

archived work and student comments sent.

Using feedback from all the above sources, Foxley et al, support that Ceilidh offers

both practical and pedagogic benefits. Firstly, Ceilidh saves time with large numbers

of students, it is cost effective, saves on resources, and can be administered by teaching

assistants freeing lecturers for teaching. Courses in Ceilidh can be reused and/or

changed with relatively little effort. Notes and exercise properties can be customised

to reflect the preferences of the teacher.

Secondly, Ceilidh offers pedagogic benefits. Marking with Ceilidh is consistent,

equitable, incremental, and redeemable. Instant feedback is returned to the students

and plagiarism is detected.

3.1.9 Summary

Ceilidh is a CBA system that supports the presentation of information to the students,

the administration of the course, and the automatic assessment of student coursework.

The structuring of a course into units and exercises is a fundamental concept in

Ceilidh. Ceilidh’s exercises support automatic assessment and can be configured for

both free and fixed response type of assessment. Ceilidh differentiates among five

types of users and provides views that are not only specialised to the user-type but

also to the type of exercise.

3. Existing work: Ceilidh and Diagram Editors 60

Ceilidh’s three layer architecture was designed aiming to support multiple courses,

automatic marking with feedback, multiple interfaces, remote learning and increased

extensibility and portability. Various user interfaces, tools and courses have been built

and used throughout Ceilidh’s development history.

The marking in Ceilidh is described in a marking action configuration file that

contains the invocation of marking tools associated with marking weight. Each

marking tool is further configured by the properties of the exercise. Oracles are used

to describe such properties. Oracles search for expressions in text and use regular

expressions. Six marking tools exist for the programming type of exercises and these

are configured to reflect metrics for existing programming languages.

Ceilidh also contains functions for the administration of courses. It monitors student

progress, manages the intercommunication among users, caters for the weekly

maintenance and editing of the material and offers plagiarism detection.

In the 10 years of experience using Ceilidh, reports from several institutions

demonstrate significant practical and pedagogic benefits. However, as the next

chapter describes, Ceilidh presented scalability, performance and maintainability

problems that made its redesign and re-implementation necessary.

3.2 Diagram Editors

A diagram editor is a computer program for creating and editing diagrams by direct

manipulation. Shneiderman coined the term direct manipulation to refer to an

interactive model of Human Computer Interaction (HCI) in which the user

manipulates application objects and receives immediate visual feedback about the

changes [Sb83]. The argument for introducing direct manipulation to an application is

that the application engages the user to the task in a more intuitive and natural way.

Usability can therefore improve for both novice and expert users. The concept of

direct manipulation has been the subject of many studies in HCI. Meyer has

documented extensive summaries of the state of the technology on the HCI aspects of

direct manipulation in [Mb90], [MHC+96] and [MHP00].

3. Existing work: Ceilidh and Diagram Editors 61

Section 3.2 introduces the issues involved in the development of diagram editors. As

highlighted previously in section 2.2, research into diagrams relates to many fields and

exhibits a wide range of interests. This also applies to diagram-editors. For example,

editors that are developed to aid the study of geometry [Ln97] have inherently

different functions from editors used to specify software [MM85]. There is common

agreement that in all but the most trivial case that the development of diagram-based

graphical editors is a complex task [Vj90], [FWW00]. The cost of building a new

diagram editor often exceeds its benefits.

A number of approaches have been pursued to address the development of graphical

editors. The first subsection gives a brief historical overview of the graphical editors

that first used direct manipulation. This is followed by a categorisation of graphical

editors into bitmap, vector and object based editors. The key approaches in

developing diagram editors are presented and categorised into multi-domain diagram

editors, frameworks and diagram editor generators.

3.2.1 History of Diagram Editors

The history of diagram editors is very closely related to the history of the Graphical

User Interface (GUI) [Mb98]. Surprisingly, however, the first diagram editor preceded

GUIs. Sketchpad, developed by Ivan Sutherland in 1963, was the first graphical editor

supporting the manipulation of objects using a light-pen. Sketchpad was a pioneering

system in so far as it was the first to demonstrate a direct model of interaction for

selecting, describing and moving objects, zooming, and making lines, corners and

joints. Sketchpad also introduced the concept of rubber-banding, which is used to give

visual, incremental and real time feedback to the user about the changes in effect of the

running manipulation. In addition, Sketchpad included a technique to represent

geometrical constraints between the elements of the diagram. Finally, it incorporated

object-oriented elements such as inheritance and composition. Examples of diagrams

supported in Sketchpad were electrical circuit and mechanical design diagrams [Si63].

Two years later, Raskin submitted his Ph.D. on human-computer interfaces in which

he describes Quickdraw, the first graphical drawing program [Rj67]. Kay proposed

the idea of overlapping windows in 1969 [Ka69], and a year later, headed research on

GUIs at the Xerox PARC labs. In 1971, Xerox’s Alto computer became the first

3. Existing work: Ceilidh and Diagram Editors 62

commercially available computer to be operated by GUI, integrating a mouse with a

bitmap display and “WYSIWYG” (what you see is what you get) programs for editing

text and drawings. Later in 1977, Kay’s concept of the dynabook [Ka77], which was

the precursor of laptops, popularised the concept of direct manipulation. In 1984, a

project began at Apple [Rl96] studying the design of various types of graphical

application to discover a “correct” design. This led to MacApp, the main precursor of

object-oriented graphical frameworks.

In the early 1980’s, with the arrival of the personal computer and the standardisation

of the mouse and bitmap screen, many more types of programs supporting direct

manipulation started to appear. CASE tools, CAD systems, visual languages, music

editors, graph editors and games are all graphical editors specific to a domain.

Generic systems, metasystems, authoring environments and generators have been

designed for many of those domains. MetaCASE, metaCAD, generators for visual

languages, and authoring environments for multimedia, games and user interfaces are

all examples of such undertakings.

In the early 90’s, with the wider adoption of object-orientation, generic designs started

to appear that represented common functionality across diagramming fields. Multi-

domain editors such as Templa and Graphica, object-oriented frameworks such as

Unidraw and HotDraw, and diagram editor generators such as DiaGen, aim to

simplify the process of developing new diagram editors.

3.2.2 Bitmap, Vector and Object Based Graphical Editors

Graphical editors can be divided into bitmap, vector and object based editors. The

point of distinction is based on the internal representation of the model of the

drawing.

Bitmap based graphical editors maintain the representation of the drawing in a bit-

based memory array. Typically, every position in the array represents the colour of a

pixel on the drawing. Interaction using bitmap-based drawing tools result in changes

in the memory array. The information that a bitmap drawing may acquire through

user interaction cannot exceed the size of the predefined array. Bitmap editors are

used mainly for making and editing drawings and images for graphic design and

3. Existing work: Ceilidh and Diagram Editors 63

illustration purposes. The directness of the drawing’s representation suits the

development of a wide range of graphical tools that are based on image processing.

Vector based editors contain a set of primitive elements such as lines, curves and

shapes, and a set of tools to manipulate the elements. The internal representation of

the drawing is kept in a data-structure that maintains all the primitives and their

characteristics. Vector based editors facilitate the interactive positioning of the

primitive elements using coordinates in a given space. As such, they suit applications

where topological accuracy is needed. Computer Aided Design (CAD) programs,

Geographical Information Systems (GIS) and 2D and 3D modelling programs are

examples of vector-based editors.

Object based editors represent sets of elements that are specific to a domain. The

internal representation of a diagram in an object-based editor depends on the

semantics of the modelled domain. Object based editors are suited to domains

concerned with structures of interconnected elements. Typically, the representation of

the diagram is used for other than illustration purposes. For example, often, circuit

editors include tools for circuit simulation, flowchart editors include tools to generate

and execute programs, and CASE tools include tools to generate source code. Case

tools, visual languages, circuit editors, music transcription editors are examples of

object based editors.

3.2.3 Problems in the Development of Diagram Editors

Diagram editors are hard and complex to develop for a number of reasons. Firstly, the

editing task and the domain might be complex. For example, editors for domains such

as 3D modelling have hundreds of different types of tools, each with its own

interactive behaviour. Secondly, usability must be addressed and balanced against

functionality. HCI must be considered in a user-centric and realistic manner. Thirdly,

as diagram editors are in effect complex GUIs, they require iterative implementation

and intensive testing. The absence of tools for automatic testing of GUIs makes testing

more time consuming and error-prone. Fourthly, editors are reactive systems that

need to be sensitive to user manipulations, and expose a high degree of liveness.

Liveness is a term introduced by Tanimoto [Ts90], as Burnett and McIntyre cite, to

3. Existing work: Ceilidh and Diagram Editors 64

describe “ the immediacy of semantic feedback that is automatically provided during the

process of editing a program” [BM95].

Diagram editors have also to be robust, to give helpful feedback, to recover gracefully

from exceptional cases, and to be forgiving to user mistakes. A diagram editor should

also be portable, scalable, expandable, and perform and adapt well to changes like any

other good quality software. It should also be able to exchange data with other

standard tools.

The limited amount of documentation on building diagram editors makes

development even harder. There are no standards, no language support for diagram

editors, and libraries that contain graphical primitives are typically very large,

complex and not portable.

3.2.4 Approaches in Developing Diagram Editors

The current approaches for the development of new diagram editors can be divided

into:

� Multi domain diagram editors

� Frameworks

� Diagram editor generators

Multi-domain diagram editors are graphical editors that have been implemented to

address more than one domain. The objective of a multi-domain diagram editor is to

address the editing of a family of diagram notations. Some designs specialise in areas

such as software engineering or electrical engineering, others are general and can be

configured to satisfy the editing requirements of a new diagram type.

Frameworks allow developers to develop new editors by reusing both design and

implementation. The development of a new editor using frameworks in contrast to

that using multi-domain diagram editors requires significantly more effort but grants

more freedom in customisations.

Diagram editor generators generate the software implementation of a new diagram

editor by parsing and compiling customised specification languages. Developers that

3. Existing work: Ceilidh and Diagram Editors 65

generate a new diagram editor have to give a description in a specification language

that defines the editor’s semantics and behaviour. In this process, programming is not

needed, however, users need to understand the generator and its description

language.

Mugridge et al have reported on systems facilitating the development of customised

diagram editors [MHG98].

3.2.2.1 Multi Domain Diagram Editors

The boundaries of multi-domain diagram editors are somewhat fuzzy. Single domain

diagram editors can be used for more than one domain and visual programming

environments can be used as multi-domain diagram editors. Vlissides [Vj90] suggests,

three criteria for distinguishing between single domain editors, and multi-domain

editors:

� Intended purpose of the editor

� Easiness of modifying the editor’s semantics

� Actual purpose of the editor by its users

The first and third criteria are used to distinguish between multi-domain diagram

editors and visual programming environments.

Sketchpad, which was the first diagram editor was also the first multi-domain

diagram editor. Sutherland designed Sketchpad to be used as a multi-domain

graphical editor. Sketchpad included interactive mechanisms for the specification of

elements and their constraints. It was used for designing technical diagrams for

mechanical and electrical engineering.

Another of the earliest systems, Thinglab, was designed by Borning [Ba79] who used

ideas from Sketchpad. Thinglab took advantage of Smalltalk’s interpreting nature to

incorporate and execute source code at run-time. This mechanism was used by

Thinglab for the description and execution of constraints. Constraints in Thinglab

could do more than attaching objects together: the visual and non-visual attributes of

the drawn elements could be related based on formulas. As formulas were described

in Smalltalk, Thinglab could be used to describe complex simulation models.

3. Existing work: Ceilidh and Diagram Editors 66

Hekmatpour‘s Templa and Graphica system [Hs90], introduced the concept of a

diagram template to customise a generic graphical editor. Implemented in C++ on a

Macintosh computer, the system consists of two programs:

� Templa: an environment for the construction of diagram templates

� Graphica: a generic graphical editor that is specified by a diagram template

Figure 3.8 illustrates the view of both Templa and Graphica. Templa allows the

definition of notation families, places, links and relationships. Notation families are

hierarchies of diagram templates related with inheritance. Therefore, domains can be

defined as sub-domains of more general domains. Places are the diagram’s nodes,

which can be composed by any graphical primitives. Links are drawing primitives

such as lines, curves and arrows that are used to show a connection between two

places. Relations are constraints that specify whether and how places can be

connected. Templa and Graphica contains implementations for templates for entity-

relationship diagrams, flow-charts, data-flow diagrams, trees, graphs and petri nets.

Nickerson used Templa and Graphica to produce three types of visual languages

[Nj94]. In his view: “it is noteworthy that most diagrammatic representation can be reduced

to minor variations on the drawing of graphs, and that the variations can be parameterised in

terms of node types, links, and relationship rules.”

Figure 3.8: Templa and Graphica

3. Existing work: Ceilidh and Diagram Editors 67

A different approach is taken in Ferguson’s MetaBuilder [FWW00]. MetaBuilder

introduced graphical meta modelling to enable the rapid creation of diagram editors.

The idea of graphical meta modelling is that specifications for a new editor are given

in the form of a meta-diagram. A meta-diagram describes the elements, relationships

and constraints of the modelled diagram. MetaBuilder’s meta-notation employs the

notion of object-oriented hierarchy. Elements in the meta-diagram can be related with

inheritance and composition and therefore complex hierarchies of diagram elements

can be specified. Elements can also acquire actions that define their graphical and

computational behaviour. On completion of the meta-diagram, MetaBuilder generates

a new diagram editor for the modelled diagram type. Although Ferguson argues that

MetaBuilder in theory can produce editors for any type of diagram, actual

implementations have been created only for diagrams related to software engineering.

After the 1990’s, a number of commercial systems were released with the intention to

improve the appearance of diagrams for publishing purposes. Multi-diagram editors

such as MicroGraphics’s ABC FlowCharter [Mic95], Autodesk’s AutoSketch [Aut00],

Microsoft’s Visio [En01], PaceStar’s EDGE [Pac01], Computer System Odessa’s

ConceptDraw [Cso01], and SmartDraw [Sma01] applied the concept of a user-

definable diagram element to allow users to create customised notations. Typically,

diagram elements have a customised graphical representation, connectivity, data

semantics and visual and non-visual attributes.

3.2.2.2 Frameworks for Diagram Editors

Apple’s MacApp, one of the first OO frameworks, was designed in 1985 to support the

development of GUI based applications on Macintosh computers [App89]. Rosenstein

cites that MacApp’s designers studied the structure of many programs for the Apple

computer while aiming to find a generic representation for applications [Rl96]. The

initial version of MacApp was implemented in Object Pascal. It contained 180 classes

distributed in several class hierarchies. Its architecture used a variant of the Model

View Control (MVC) pattern to separate the model of the application from its

appearance and control. MacApp introduced the concept of using objects to represent

the actions performed by the user, an idea that was later identified as the command

design pattern. MacApp also included a generic implementation for single level undo,

an inheritance based event mechanism for delegating and handling events, and a

3. Existing work: Ceilidh and Diagram Editors 68

collection of simple GUI components such as windows, scrollbars, buttons, menus and

dialogs. MacApp’s design was not intended to facilitate the development of diagram

editors, however, it influenced greatly the future generation of frameworks. A

comprehensive guide to MacApp’s architecture is documented by Wilson, Rosenstein

and Shafer [WRS90].

Gamma’s ET++ object-oriented framework, started as an attempt to convert MacApp

to the UNIX OS [GMW88]. ET++’s architecture integrated a more advanced set of GUI

components such as trees and tables, as well as a collection of reusable data-structures.

As UNIX did not have a standard windowing system, ET++ introduced a layer of

classes that adapted the interface of ET++’s GUI primitives to those of the windowing

system. ET++ included three main collections of classes: Foundation, Application and

User-Interface classes. The Foundation classes included data-structures such as lists

and dictionaries, a change propagation mechanism that later became the observer

pattern, and classes for Input/Output. The application classes had similar structure to

those of the MacApp framework and actions are implemented using the command

pattern. Figure 3.9, illustrates a view of ET++’s architecture and examples of

applications created using ET++.

ET++ consisted of 300 classes and made the development of new editors much easier.

Gamma reported that programs such as drawing editors comparable to MacDraw, tree

editors, spreadsheets and other graphical applications were easily developed as

student projects. Ackermann used ET++ to produce a range of graphical editors such

as music, 2D and 3D drawing editors [Ap93], and object-oriented design editors

[Ap96]. A detailed overview of the architecture of ET++ is given in [WG95].

Figure 3.9: ET++’s architecture and an example of some graphical editors

3. Existing work: Ceilidh and Diagram Editors 69

Unidraw was one of the first object-oriented frameworks that aimed to solve the

problem of developing domain specific graphical editors in a general way [VL89].

Completed in 1990 by Vlissides as part of his thesis in general object editing, Unidraw

is based on the Interviews library for structured graphics [LVC89]. Similarly to

Interviews, it was implemented in C++ under the X-Window system. Consisting of

180 classes, Unidraw’s architecture addresses four basic types of abstraction:

components, tools, commands and external representations. Components encapsulate the

appearance, the data and the behaviour of the graphical elements of a drawing or a

diagram. Components typically represent domain objects and can be connected using

relationships that support dataflow. Tools allow the direct manipulation of

components and other interactive operations on the drawing canvas. Commands are

objects that encapsulate operations performed on components. External

representations perform translations between the editor’s internal format and other

formats.

Figure 3.10: Editors created with Unidraw for drawing, circuit, and network design

To create an editor for a new diagram domain the developer has to develop

specialised classes for each abstraction or simply reuse existing implementations.

Vlissides demonstrated a considerable reduction in effort required to develop a new

graphical editor. As an example of Unidraw’s capabilities, three domain dependent

graphical editors were developed: a drawing editor, a circuit editor and a GUI builder.

Schonwalder and Langendorfer have used Unidraw to create INED, an independent

graphical network editor [SL93]. Figure 3.10 presents a view of these editors. A

detailed overview of Unidraw is given by Vlissides in [Vj90].

3. Existing work: Ceilidh and Diagram Editors 70

HotDraw was originally developed in 1987 by Beck and Cunningham [Tek87]. After

Johnson’s seminal paper on documenting frameworks using patterns [Jr92], Brant

redesigned HotDraw as an example of a simple and educationally useful framework

[Bj95]. HotDraw is implemented in Smalltalk-80. It employs the MVC pattern to

separate the model of the editor from its graphical representation and control. It

defines abstractions for editors, drawings, drawing views, figures, tools, handles and

constraints. Editors are applications that hold a drawing and support application-

based functions. Drawings are containers for figures drawn. A drawing has

associated one or more drawing views that render the drawing to the screen.

Drawings allow direct manipulation by delegating events to the current tool. Tools

interpret the events and issue commands that when executed invoke operations on the

figures. When a figure is selected, it exposes handles that can be directly moved to

change a property of the selected figure. The interface of each abstraction is general

enough to allow a diversity of extensions and customisations not only by

programming but also by using special development tools.

Figure 3.11: A network, drawing and pert editor based on HotDraw

Brant and Johnson reported on a development tool for HotDraw in which the user

composes the various elements of a manipulation and its effects to produce a new tool

[BJ94]. This could be a tool for creating a new figure, a special purpose select tool, a

zoom tool or any other tool offering interaction on the drawing canvas. Examples of

developed diagram editors in HotDraw include a PERT chart editor, a drawing editor,

3. Existing work: Ceilidh and Diagram Editors 71

a network editor and a class inspection tool. Figure 3.11 illustrates the first three

editors as reproduced from Johnson [Jr92].

A port of HotDraw to Java was implemented by Gamma in 1997 [BG97]. JHotDraw

defines similar abstractions to HotDraw: drawings, drawing views, tools, figures, handles

and commands. Each abstraction in JHotDraw is defined as an interface. All the

interfaces together are contained in a package that is independent of other packages.

This separates the design of the framework from specific implementations and hence

demonstrates reuse of design. JHotDraw contains a range of concrete

implementations for primitive and composite figures, for generic creation, connection

and text tools. It also defines an abstract editor so that it uses implementations for

running both as an application and as an applet. However, JHotDraw is missing

features that are necessary for diagram editors, such as multilevel undo, support for

advanced graphical features, zooming, and format translations. Examples of graphical

editors developed with JHotDraw include editors for drawing, net diagrams, and pert

diagrams. Figure 3.12 illustrates the view of these editors. Kaiser describes the

process of developing a UML diagram editor in [Kw01].

Figure 3.12: A drawing editor, and a pert diagram editor implemented with JHotDraw

3.2.2.3 Diagram Editor Generators

DiaGen as described by Minas is a diagram editor generator, developed in C++, for

the X-Window system [Vg95]. DiaGen focuses on ensuring that the diagram

constructed by the user will always have the correct structure. Consisting of a library

3. Existing work: Ceilidh and Diagram Editors 72

of graphical components and of a diagram editor generator, DiaGen needs a

specification of a hypergraph grammar to generate a new editor. A hypergraph

according to Minas is “a generalisation of a graph in which edges are hyper-edges; i.e. they

can be connected to any fixed number of nodes” [MV95]. The specification includes

descriptions for the diagram’s structure, the appearance of the elements, the layout

mechanisms for the positioning of the elements, and the rules for behaviour specific to

the editing of the diagram. It is expressed in:

� Context free hypergraph grammar that specifies the diagram syntax and the

editing rules

� Dialog rules that define the interaction with the user

� Transformational rules that describe how to add and remove elements

DiaGen’s original implementation demonstrates three diagram editors for Nassi-

Shneiderman diagrams (NSD's), flowcharts and state machines. No references have

been found reporting on the use of DiaGen from third parties.

Generators have also been used to create editors for custom visual languages. As

diagrams can be considered visual languages, such generators can also be used to

generate certain types of diagram editors. Haarslev and Wessel documented, with

GenEd, an approach in which algebraic specifications are used to generate an editor

for a visual language [HW96]. Implemented in CLOS, GenEd incorporates examples

of editors for petri-nets, entity relationship diagrams, and geographical information

systems.

3.2.4 Summary

Diagram editors use the direct manipulation paradigm to allow users to create and

edit the diagram. As domain dependent graphical editors are complex to develop,

various ideas address the problem of building new diagram editors. Existing

approaches can be divided into multi-domain diagram editors, frameworks and

generators. Multi domain diagram editors support a generic model of interaction and

allow the customisation of diagram elements, connectivity semantics, and behaviour

specific to the editing of the diagram. Frameworks for diagram editors encapsulate

the design of an abstract diagram editor and allow a programmer to derive a new

3. Existing work: Ceilidh and Diagram Editors 73

editor by providing specialisations and extensions. A lineage of frameworks starting

with MacApp has demonstrated an evolution of an architecture based on design

patterns. Diagram generators can create diagram editors automatically without

requiring the use of programming at any stage of the generation. However, the

process of deriving a new diagram editor necessitates writing the specification in a

customised language that is specific to the generator.

3.3 Summary

This chapter highlighted the key elements of the existing work upon which this

research is based. Section 3.1 presented the Ceilidh CBA system, described the

fundamental principles and illustrated its architecture. The concepts of marking

action, marking tools and oracles have been introduced and explained. Based upon

these concepts, Ceilidh built implementations to support the assessment of

programming courses. Marking tools for the assessment of imperative programming

languages are reviewed. Ceilidh’s support for administration is examined.

Evaluations of experience using Ceilidh demonstrate the gains in practical and

pedagogic benefits.

Section 3.2 introduced graphical diagram editors and examined the problem of their

development. It categorised approaches to solve the problem of creating a new

diagram editor into multi domain editors, frameworks for graphical editors and

diagram editor generators.

Based on Ceilidh and on the existing approaches for the development of diagram

editors, chapter 4 asserts that a technique for general diagram-based automatic

assessment is feasible by composing ideas from the marking of programming in

Ceilidh and from diagram editor development approaches.

Chapter 4,

Identifying Diagram-Based CBA

Defining Diagram-Based CBA

Detailed Requirements

The Problem of Developing
Diagram-Based CBAIdentifying

Diagram-Based CBA

Definitions
Research Aims
Motivation
General Objectives

Feasibility
Customising the Diagram Editor
Marking Diagrams
Integrating to CBA

Usefulness

Suitable Student Diagram Editor
Free-Form Assessment Mechanism
Integration to a suitable CBA

“Having precise ideas often leads to a man doing nothing”,

Paul Valery, 1871-1945

4. Identifying Diagram-Based CBA 75

Introduction

The development of an authoring system for creating diagram based CBA is feasible

and useful. This chapter defines diagram-based CBA, discusses the problems

involved in developing it, and discuss why overcoming these problems is worthwhile.

An authoring environment is proposed as a medium to ease the complexity of

developing diagram-based CBA. Detailed objectives are set in relation to the fields of

CBA, diagramming, and software engineering and to the phases of design,

implementation and evaluation.

Section 4.1 offers a definition for diagram-based CBA and discusses the questions that

this research aims to answer. Section 4.2 expounds on the problem of developing

diagram-based CBA, and identifies three key problem areas that prior to this work

have not yet been approached. Section 4.3 puts forward the idea of an authoring

environment and proposes to integrate it to a CBA system that supplies the necessary

features for assessment. The three problem areas are further analysed taking into

consideration concepts presented in chapters 2 and 3.

The first problem involves the customisation of the student diagram editor to the

requirements of the CBA exercise. The second problem concerns the design of a

general and expressive mechanism to support the automated marking mechanism.

The third problem involves the integration of the designs to a CBA that supports the

full lifecycle of coursework for summative assessment in a controlled environment.

The requirements for the feasibility and usefulness of the proposals to each of the

problem areas are examined with respect to satisfying the general objectives.

The designs for the authoring system and the software components related to CBA are

documented in the next chapter. Both take advantage of theory and practices in

object-oriented frameworks and design patterns to answer to questions identified in

section 4.2. The resultant architecture is founded upon software engineering research

presented in sections 2.3 and 3.2.

4. Identifying Diagram-Based CBA 76

4.1 Defining Diagram-Based CBA

Section 4.1, introduces the subject of diagram-based CBA by defining the key concepts

and asking the key questions. Based on these questions, general aims are set and

motivation presented.

4.1.1 Definitions

The distinction between CBA and CAA is that in CBA, the student solution is entered

on-line, using a suitable environment.

Consequently, diagram based-CBA could be defined as:

“a type of CBA in which the solution to a required problem or the answer to a

required question is drawn by the student using a suitable graphical

environment and is assessed automatically according to appropriate marking

guidelines”

Diagram based-CBA can be used for formative, diagnostic or summative assessment.

This research considers only summative assessment, for four reasons. Firstly, practical

benefits are gained only through replacing part of the assessment process with CBA,

and thus cutting the costs of manual labour. Secondly, in academic institutions,

students are motivated to use CBA only when the attributed marks are part of the final

course mark. Thirdly, challenges related to security, performance, and administration

are present only in CBA for summative purposes. Finally, CBA built for summative

purposes could accommodate formative and diagnostic assessment by simply not

taking into account the marks.

A controlled environment refers to a setting where summative assessment can take

place and where the security and integrity of the marking is a major concern. The

stages of authoring, marking, and managing a CBA exercise are referred as the full

lifecycle of a CBA exercise. The authoring stage conceptualises the exercise, develops

all the required material and evaluates its validity with further testing. As soon as the

required material has been completed, the exercise can be deployed and used by the

students. The marking stage encompasses the details specific to the automatic

assessment of the exercise and the creation of helpful feedback. The managing stage

includes all the tasks involved in running and administering a CBA exercise, within an

4. Identifying Diagram-Based CBA 77

academic term. These tasks include monitoring student related information, changing

course properties and customising features related to the execution and deployment of

the CBA exercise.

4.1.2 Aims and Motivation

Work on diagram-based CBA is sparse. This section discusses some of the most initial

and fundamental questions that originate to the fields of CBA, diagramming and

software engineering.

As pointed out in section 2.1, educators increasingly acknowledge the practical and

pedagogic benefits that are gained by using CBA. Can these benefits be gained using

diagram-based CBA? An answer to this question serves as the principal aim of this

work, an important contribution to the field of CBA, and a useful direction, as distance

learning increasingly becomes reality. The practical benefits should be very similar to

those gained by using CBA in general. Assessment can be performed on a large scale,

in a cost effective way, and in accordance with Browns elements of quality for

assessment. The pedagogic benefits should also be similar to those acquired by using

free response assessment. In free response assessment there is more freedom in

designing material that assesses student work in each of Bloom’s six cognitive levels of

learning.

Determining the kind of diagrams for which it is feasible and useful to have free

response CBA and implementing a generic facility that supports them, results in the

interest of this work in diagramming and software engineering.

The diagramming questions are mostly related to the structure of diagrams in relation

to diagram editors and to CBA marking systems. What are the criteria that constitute

a suitable type of diagram for automatic assessment and how can the marking criteria

be modelled? The detection of both commonality and variation between diagram

types can not only result in finding such criteria, but also present a generic solution to

the problem of developing diagram-based CBA.

From a software engineering perspective, it is imperative to stipulate the qualities that

the resultant software must have to comply with the functional requirements in a way

that is satisfying to its users, allows future development and is amenable to change.

4. Identifying Diagram-Based CBA 78

Change is an important property of the implementation that facilitates

experimentation and development of diagram based CBA in a wide range of fields

that use diagrams.

The approach to find the answers to the questions posed is pragmatic and practical. A

key objective of the research is to investigate, propose, design and evaluate techniques

to allow the development of automatically assessed diagram-based coursework that

can be used in the context of academic courses. The main objective of the dissertation

is to demonstrate that the proposal of designing an authoring environment that

facilitates the full lifecycle of diagram-based CBA is both feasible and useful.

4.1.3 Summary

This section has defined diagram-based CBA and has posed the questions that need to

be answered before establishing the practice of diagram-based CBA. Specifically, the

questions address how CBA can benefit from diagram-based CBA.

4.2 The Problem of Developing Diagram-Based CBA

CBA systems, in a conceptual form, consist of a database, software components for

authoring, marking, administering, presenting, and submitting coursework, and

analogous UI interfaces. Figure 4.1 illustrates a view of the parts of a typical CBA

system.

The database can be seen as the place where all the information is stored. Three basic

types of data exist in CBA systems:

� Authored material such as coursework and marking related data

� Class related material such as student submissions, marks, and user

information

� Properties for administration and marking

The software components are the modules of software implementation that support

the requests from the user-interfaces to the database. Typically, these modules contain

4. Identifying Diagram-Based CBA 79

logic that describes the execution and constraints of the processes involved in CBA.

The user-interfaces provide the means to use the system and support various options.

Figure 4.1: A high level view of the parts of typical CBA systems

The variation between types of assessment does not affect the database part, the

software components for setting, submitting and administering coursework as well as

many of the features of the UIs. All these parts can be implemented in a generic way,

without having to know about the specifics of an assessment type.

In three areas, diagram-based coursework exhibits differences. These are on:

� The UI part that allows the entry and editing of the solution to the exercise by

the student

� The marking mechanism that directs the marking of the student solution and

returns appropriate feedback

� The process of authoring coursework and the refinement of the generic CBA

model to support the full lifecycle of the CBA coursework for summative

purposes in a controlled environment

4. Identifying Diagram-Based CBA 80

The next three subsections analyse each problem area while referring to literature

presented in the previous two chapters and discussing the options for exploiting

research ideas and suggesting general objectives for each of the problem areas.

4.2.1. The Student Diagram Editor

In CBA, students are presented with a UI that allows the entering of the coursework’s

solution. This student environment varies according to the type of exercise. Figure 4.2

illustrates the types of student UI environments used by the CBA systems that have

been reviewed in chapter 2.1. CBA systems for MCQs, such as WebMCQ [DG99] and

QuestionMark [Qm01], Quizit [TBF97], and Ceilidh [FHG96], use web pages, GUI and

text based applications respectively. Similar interfaces have been used in systems for

the text and numeric type of CBA assessment, such as Ceilidh [BBF+93], TRIADS

[Md99], and Examine [EX95]. Hotspot graphics exercises use multimedia authoring

environments such as Authorware and HTML image-maps. CBA systems for essay

marking such as Ceilidh and the ETS system [BKW+98] can use any standard word

processor that can save documents in a predetermined format. In CBA systems for

programming, such as Ceilidh, BOSS [JL98] and ASSYST [JU97], the environment is

simply a text editor. Although an Integrated Developers Environment (IDE) could

replace the text editor, this has not been chosen by any of the reviewed systems for

two reasons. Firstly, learning to operate the IDE might present students with an extra

level of cognitive complexity. Secondly, in large classes getting licences or even

installing the IDE on all the computers for students is impractical. Specific diagram-

based CBA exercises such as the ones described by Hoggarth and Lockyer in [HL98],

use external graphical CASE tools.

4. Identifying Diagram-Based CBA 81

Fixed Response

Free Response

Student Environments
for CBA types

Multiple Choice
GUI application
Text based appliaction
Web page

Simple Text/Numeric Answer
GUI application
Text based appliaction
Web page

Hotspot Graphical
Authorware Runtime
Web page

Essay
Word Processor
Text Editor
Web page

Programming
Text Editor
IDE

OO Diagrams Case Tool

Generic Diagrams Generic
Diagram Editor

Figure 4.2: Types of student environments for CBA types of assessment

What kind of student editor would be suitable for diagram-based CBA? Two main

choices exist:

� A standard UI that allows the editing of any solution

� A customised UI that has been tailored to the domain of the exercise

Selecting a standard UI for the student environment has the advantage of simplifying

the authoring of a single exercise. The standard UI can be invoked on every exercise.

A standard UI could be represented by using a:

� Text editor

� Specialised diagram editor

� Multiple purpose diagram editor

The choice of using a text editor means that the diagrams have to be described by the

students in a text-based language. A pedagogic disadvantage of taking this approach

is introducing unfamiliar and unwanted language that is far removed from the actual

exercise solution – the diagram. As a simple example of this problem, Figure 4.3

reproduces from Fisler [Fk96] a simple pulser circuit diagram with one of its possible

textual descriptions. The example demonstrates clearly the educational value of using

a graphical view to depict a concept. The circuit’s diagrammatic representation is

4. Identifying Diagram-Based CBA 82

easier to draw, understand and recognize. The textual description is harder to

understand and implies creating a space-based mental picture, locating the

components and their relationships.

SP(I, O) ≡ ∃x∃y : delay(I, y) ∧ not(I, x) ∧ and(y, x, O)

delay(I, O) ≡ ∀t : O(t + 1) = I(t)

not(I, O) ≡ ∀t : O(t) = 1 - I(t)

and(I1, I2, O) ≡ ∀t : O(t) = I1(t) x I2(t)

Figure 4.3: Both representations describe a configuration of the same single pulser

The decision of using a specialised domain graphical editor or a multiple-purpose

diagram editor leads to important disadvantages. Firstly, as most specialised editors

have been developed for meeting publishing and printing needs, they do not support

the exporting of the structure of the diagram in a common way. Even if there is a way

to export an understandable and full representation of the diagram in text,

dependencies on external formats and tools defined by third parties can cause the

breaking of the authored exercises. Subsequent releases of the external software can

become increasingly unsynchronised with the CBA software. Secondly, external

editors contain peripheral functionality that introduces learning hurdles for the

students. The time learning the CBA tool has to be minimised so that students can

focus upon the problem. Thirdly, very limited customisation restrains both the range

and the types of potential exercises. Only diagram types that are explicitly supported

can be assessed, experimentation is hard and depends on undocumented features and

formats. The range of exercises is dependent on the range of diagrams that the tool

supports. Finally, diagram editors do not offer any extension mechanisms for

allowing the interaction and integration with a courseware system because they have

not been designed to do so.

These disadvantages are minimised by choosing a solution that sees the customisation

of the diagram editor to the exercise’s domain. If the student diagram editor is a part

of the CBA system, then the potential for satisfying the exercise requirements is much

greater.

4. Identifying Diagram-Based CBA 83

The problem of creating a diagram editor for a specific notation has been approached

with multi-domain graphical editors, object-oriented frameworks and diagram editor

generators. Could any of these solutions be reused within a CBA context? The criteria

for reuse dictate simplicity for the creation of a new diagram editor and an ability to

integrate with CBA in a way that can be used realistically in academia. Commercial

systems such as Flowcharter and Visio, old systems such as Sketchpad and Thinglab,

and frameworks in languages and operating systems that are obsolete cannot be

directly used. These systems rather than being reused offer concrete ideas concerning

aspects of the process of customising a diagram editor which are described in the

following chapter.

Hekmatpour‘s Templa and Graphica system [Hs90], is the only multi-domain

graphical editor that could be reused in an assessment context. In Templa and

Graphica the configuration of a new diagram editor is given graphically, by selecting

and defining the elements of a notation. However, because Templa and Graphica is an

old system, many of the features of current GUI’s are missing. Additionally, it was

developed for Apple computers, thereby considerably limiting the number of

installation bases.

Existing frameworks could be reused but only indirectly. Object-oriented frameworks

for diagram editors such as Unidraw, Hotdraw and JHotDraw, ease the development

of new diagram editors by providing abstractions common to all diagram editors.

These frameworks are intended to be useful to programmers, who once they

understand the framework’s abstractions can develop new instances of the framework

by specifying the variability between the modelled domain and the framework.

However, such frameworks are complex and would be clearly overwhelming to

educators interested in making diagram-based CBA. The complexity of such

architectures is a consequence of supplying features that are not necessary or even

useful in the context of assessment. Such features include automatic layout, routing

and correction, beautification, constraints matching and externalisation of the

graphical structure to file formats.

Diagram generators such as Mina’s DiaGen could not be reused for similar reasons.

Viehstaedt reports 1900 lines of code are needed to create a new editor for NSD’s

[Vg95]. Problems with diagram editor generators are that they still need to expose a

4. Identifying Diagram-Based CBA 84

great deal of the mechanics of the editor to the developer. The mapping between the

language of the diagram editor description and the final diagram editor cannot be

conveyed to non-programming users in a simple and rapid manner.

The aim in this area is to offer the ability to customise the diagram editor to the needs

of the exercise by educators from non-programming backgrounds.

4.2.2. The Marking of Student Diagrams

This problem area involves the mechanism for marking the student diagram and

returning feedback and results to students. What type of graphically solved exercises

can be automatically assessed while ensuring consistent and helpful feedback to the

student? How can the marking criteria for those domains be modelled?

Fixed Response

Free Response

Marking for CBA Types

MCQs Template Matching

Simple Text/Numeric Answer
Template Matching
Simple REs

Hotspot Graphical Custom Template Matching

Essay
Style Analysis
LSA
Hybrid Analysis

Programming
Static Marking Tools
Dynamic Marking Tools

OO Diagrams Heuristics

Generic Diagrams Diagram-Based
Marking Tools

Figure 4.4: Types of marking mechanisms for CBA types of assessment

Mechanisms for marking fixed response assessment present no difficulties in their

design and implementation. Simple matching algorithms can be used that compare

the student solution to the exercise solution. Systems such as Quizit and MarkIt, use

the notion of a solution template that contains answers to the quizzes. Systems for

simple numeric/text answer use similar ways to describe simple variations in the

answer. In Ceilidh, regular expressions are used to describe more than one correct

answer. In graphics hotspot CBA and in systems such as TRIADS, the marking

mechanism is based on template solutions that are customised. Simple comparisons

are used in all cases for the matching.

4. Identifying Diagram-Based CBA 85

Free response assessment requires more elaborate modelling for marking. This is

because rather than comparing the student solution to the template solution, a free

response assessment system has to evaluate various qualities that all together

contribute to the final marking. Developing marking tools for evaluating criteria on

per domain and per exercise bases is the approach taken by systems such as Ceilidh,

BOSS, AssistIt, and RoboProof. Figure 4.4, illustrates the types of marking used within

the CBA systems that have been reviewed in chapter 2.

A diagram-based exercise could potentially have an infinite number of correct

solutions. As in all free response assessment, rather than comparing specific strings

the marking mechanism has to know how to detect and evaluate specific aspects of the

quality of the student diagram. Diagrams that have an explicit structure, such as

circuits, flowcharts and graphs, could be marked in a similar way to the assessment of

programming coursework. Dynamic and static metric tools could be written to assess

the dynamic and static correctness of the flowchart, circuit or graph, using techniques

used in programming. For diagrams that do not seem to have such explicit structure,

techniques used in the assessment of essays or even new methods might be more

appropriate. As Ceilidh’s marking tools have been useful for CBA in many

programming languages, diagram marking tools could have the same effect in

diagram-based coursework.

The process of assessing a student diagram depends greatly on the diagram notation

and on the underlying concepts that the notation represents. For example, what needs

to be measured on a circuit design exercise is inherently different to a project

management exercise that uses pert charts. The marking criteria for the circuit would

involve simulation of the logic gates, whereas the ones for the pert chart exercise

would involve a walkthrough of the graph and a check of the dependencies in terms

of projects, constraints and resources.

Devising a prototype mechanism that allows experimentation and creation of novel

automatically assessable and across domains diagram CBA is an important

deliverable. By using this, metrics research for the evaluation of diagram-based

coursework could be realistically tested in the context of the classroom.

4. Identifying Diagram-Based CBA 86

4.2.3 Integrating Diagram-Based Assessment into CBA

Diagram-based CBA can be used in education if the full lifecycle of CBA exercises is

supported. The full lifecycle of diagram-based CBA, similarly to that of other types of

CBA, includes the authoring, marking, running and administration of the diagram-

based exercise. Conceptually, many of the CBA parts between diagram-based CBA

and other types of CBA are common and even reusable. The problem is to find what

can be reused and what cannot, under the constraints imposed by the context of the

student diagram editor and of the diagram marking.

Ceilidh has been the only system in literature to cater for:

� The full lifecycle of free response CBA

� The development of CBA in new domains

The important issue in this problem area is whether it is possible to integrate the

designs for the problem areas of the diagram editor and the diagram marking within

Ceilidh.

At a first glance, it might be reasonable to speculate that most of the parts of Ceilidh

with the exception of the student environment and the marking mechanism can be

reused. However, the integration of a diagram-based type of assessment into Ceilidh

is not straightforward for three reasons:

� As the student diagram editor and the marking system have dependencies on

other parts of the Ceilidh system, the changes on the student environment and

the marking system propagates to Ceilidh’s other subsystems.

� Highlighted performance, scalability and extensibility problems in Ceilidh

could constraint the usefulness of diagram-based CBA.

� Architectural limitations in Ceilidh imposed by its three-layer model reduce its

maintainability and extensibility to a degree that would significantly decrease

the feasibility of the diagram-based coursework. These limitations could be

rectified by using simple object-oriented reuse techniques.

4. Identifying Diagram-Based CBA 87

An important reason to restructure Ceilidh is to provide support for more students

and installation-bases and to satisfy a wider range of requests in terms of

modifications and updates. The main concerns motivating this extensive change are to

resolve Ceilidh’s architectural limitations, to improve maintainability, allow functional

extensions and diverse configurations and increase usability for all its users. An

additional part of this problem area is also to determine whether limitations exist on

the administration of a course in Ceilidh that could be improved for the assessment of

diagram-based exercises.

The objective of this problem area is to integrate the functions of typical CBA with

diagram-based assessment. Only with a pragmatic and complete system for authoring

diagram-based CBA can the general questions posed by this work be answered. An

integrated diagram-based CBA system would be useful practically and pedagogically,

and would be fundamental to further experimentation and research.

4.2.4 Summary

This section raised three main problem areas. It presented the key issues in each area

along with the motivation for solving them in a way that prior to this work has not yet

been attempted. The general objective to investigate, propose, design and evaluate

techniques to allow the building of automatically assessed diagram-based coursework

has been broken down to general objectives for each one of the problem areas.

4.3 Detailed Requirements

To the problem of developing diagram-based CBA, this work proposes an authoring

environment as a feasible and useful solution. The general form of solving the

problem can be broken down to accomplishing the general aims of each of three

problem areas. Those are:

� Addressing the authoring of the student diagram editor as part of authoring

the CBA exercise

� Designing a generic marking mechanism that can be customised to mark a

range of diagrams

4. Identifying Diagram-Based CBA 88

� Integrating the two solutions in a CBA system that facilitates realistic

experimentation and evaluation of diagram-based CBA for summative

purposes

An authoring environment should allow users to experiment with the development of

diagram-based CBA in a simple but also effective manner. It should support a wide

range of customisations and extensions for both the student diagram editor and the

marking scheme to suit potential types of diagram-based exercises. It has to be user-

friendly for both authors and students, and to be designed according to methods that

would most likely increase software quality and system longevity.

An authoring environment for diagram-based CBA that fits these requirements would

not only be essential in answering the basic question about the potential practical and

pedagogic benefits but also promote further experimentation for modelling

assessment criteria in diagram-based domains.

The key issues in building such an environment are its feasibility and usefulness. Both

are now examined in detail for each of the problem areas and specific requirements are

set.

4.3.1 Feasibility

A plan is feasible if it can be implemented in a way that suits its requirements. The

proof of feasibility for the authoring environment that solves the problem of

developing diagram-based CBA is a fundamental deliverable of this work.

The idea of an authoring environment is novel, considering that the nearest attempt to

a diagram-based type of CBA by Hoggarth and Lockyer in [HL98], has four major

differences from the model proposed in this work. Firstly, Hoggarth and Lockyer ‘s

system is implemented solely towards a concrete domain. Secondly, it does not

explicitly promote a technique for the authoring of coursework. Thirdly, it does not

allow customisations for marking and lastly it has not been built for summative

assessment in a controlled environment.

Considering the question “Can an authoring system be designed in a way that addresses the

main requirements and makes diagram-based CBA useful”, the next section explains the

4. Identifying Diagram-Based CBA 89

requirements identified for each one of the problem areas, and discusses their

relationship to the fields of CBA, diagramming and software engineering.

4.3.1.1 Requirements for Solving the Problem of Customising the Diagram Editor

The proposed authoring environment allows the customisation of the student diagram

editor on a per exercise basis. A wide range of requirements exists for both the

authoring environment and the student diagram editor. These requirements originate

in the fields of CBA, diagramming and software engineering and refer to the phases of

design, implementation and evaluation. Figure 4.5 illustrates a mindmap of the

requirements.

As far as CBA is concerned, the customised diagram editor must be easy to use,

functional, and should satisfy the editing requirements of a diagram-based exercise.

Direct manipulation techniques must be employed as they allow the student to edit

more naturally the diagram solution. The environment must provide facilities to

customise the interaction for a particular notation or exercise. For example, in CBA for

circuit design, the environment must support the creation, parameterisation and

connection of components in a different way than in CBA for software design. This is

because the two domains are inherently different. They describe different concepts

and depict these with different visual symbols while using different composition rules.

As requirements vary for different diagram notations, a common base has to be

designed that takes into account the variation and allows suitable configuration.

The student diagram editor must be composed by standard GUI primitives that are

common to most graphical applications and are most likely to be known to students,

such as menus, toolbars, buttons, scrollbars, and so on. Various operations for the

editing of the diagrams must be supported:

� Selection and translation (move, rotate, scale, stretch)

� Parametarisation (changing of attributes such as sizes, colours, labels, etc)

� Connection

� Canvas editing operations (such as zooming, scrolling, snapping to grids etc)

4. Identifying Diagram-Based CBA 90

CBA

Diagramming

Software Engineering

Requirements for the
Customisation of the

Student Diagram Editor

Easiness - Functionality
High Configurability
Standard GUI Primitives

Direct Manipulation

Selection
Translation
Parametarisation
Connectivity
Zoom In - Out

General Application Functionality
File Operations
Printing Operations
Editing Operations

Standard External Format

Types of Diagrams

Diagram Editors

HCI
Simplicity
Intuitiveness
Usability

Functional Design
Reusability
Maintainability
Performance
Platform Neurtal
Robustness
Security

Figure 4.5: Requirements for the customisation of the diagram editor

General application functionality such as multi-level undo, file, editing and printing

related operations must also be supported for usability reasons. Finally, the student

diagram editor must be designed to store the diagram in a standard format that is

comprehensible to the marking system, for all possible domains.

The authoring environment for customised diagram editors should comply with the

requirements of the diagram editor. The authoring environment is used by authors to

produce diagram editors, which are used by students to produce diagrams. It must

provide features that permit the creation of student diagram editors for a number of

the diagram notations surveyed in section 2.2.2. It should additionally define

graphical tools for the specification of the variation amongst diagram editors and

propose a technique for mapping the domain elements to diagram representations.

From a diagramming perspective, the requirements for both the student diagram

editor and the authoring environment are to address useful to education diagram

notations, whilst taking into consideration the standards set by the diagramming

community. Standard practices in HCI have to be employed to design the interaction

4. Identifying Diagram-Based CBA 91

between the user and the diagram editor. Simplicity and intuitiveness of the diagram

editing are very important to increase usability and improve the student’s experience

of assessment.

From a software design perspective, the authoring environment is a much more

important and complex deliverable than the student diagram editor. Authored

diagram editors can be seen as simply a “property” of a CBA exercise. The main

requirement in software engineering for the authoring environment is to be designed

in a way that makes the implementation of the functional specification feasible.

Additionally, the design must result in an implementation that has reusable and

maintainable parts that can sustain change. One of the most essential concerns in

software over the last thirty years has been exactly this problem of unanticipated

alteration. In an effort to handle change, there was a move towards abstraction,

separation of design from its implementation and an increasing appreciation of the

importance of software architectures. As software artefacts try to resist time decay, the

realisation of the “tyranny of a single implementation” as Kay has accurately described,

becomes progressively more obvious [Ka97]. Single implementations, even if

designed to be flexible, fail to capture the essence of the problem domain in time. This

is because time changes the system’s original requirements in often unpredictable

ways. As the structure that joins systems parts contains constraining relationships and

dependencies, change tends to be hard and expensive.

Additional requirements in software engineering for both the authoring environment

and the authored diagram editors are to perform well, to be platform neutral, robust,

and to comply with security constraints enforced by the objective to execute diagram-

based CBA in a controlled environment for formal marking. A complimentary

requirement is to design the authoring environment so that it encourages further

development related to other research interests. This is important because an

authoring environment that requires very little authoring effort to make a new

diagram editor is a deliverable much needed in many fields.

Complexity, which is not necessary for the objectives in CBA, should not be part of the

system. Specifically, issues such as diagram editing constraints, efficiency in large

scale diagrams, transformations to various file formats, automatic layout and routing

which are often parts of diagram editors could all be avoided as they are not directly

4. Identifying Diagram-Based CBA 92

related to the CBA context. Instead, simplicity, extensibility, usability and

standardisation on a generic external format are seen as much more important

features.

In general, the idea of customising the diagram editor’s behaviour to the properties of

a domain and to those of an exercise presents three directions for evaluation:

� The extent of domain coverage for new diagram editors

� The easiness of the mapping between the representations of domain elements

on the diagram and of suitable structures that can be marked

� The easiness of authoring a new type of diagram-based CBA exercise

The extent of domain coverage is the range of potential diagram editors. The

authoring environment must be designed with the intention to balance domain

coverage with simplicity of use. The mapping between the representations of

diagrams and of a standard format is very important. It is necessary for the marking

system to be able to understand fully the student diagram. The easiness of authoring a

new type of a diagram-based exercise promotes experimentation and further

evaluation.

4.3.1.2 Requirements for the Marking of the Diagrams

Following the proposal to solve the problem of automatically marking diagrams using

similar techniques to the marking of programming, results in requirements that relate

to the fields of CBA, diagramming and software engineering. Figure 4.6 illustrates a

view of these requirements.

From a CBA perspective, a marking mechanism has to be designed that will be

expressive and extensible for authors that want to create a new type of diagram-based

exercise. Additionally, the marking system has to implement a mechanism to return

detailed feedback. Consideration has to be taken of the generic ideas that made

Ceilidh’s marking mechanism useful amongst academic institutions. Specifically, the

aim is to introduce more flexible and generic marking than Ceilidh did.

4. Identifying Diagram-Based CBA 93

CBA

Diagramming

Software Engineering

Requirements for the
Marking of Diagrams

Expresiveness
Usability
Extensibility

Domain Coverage
Usage of standard tools

Functional Design
Reusability
Maintainability
Performance-Scalability
Platform Neurtal
Robustness
Security

Figure 4.6: Requirements for a generic solution to the marking of diagrams

Concerning the field of diagramming, the marking mechanism must be configurable

to mark a wide range of domains. To achieve this it must simplify the integration of

external tools that evaluate some quality of the diagram. For example, if the type of

diagram-exercise is analogue circuit design, the marking system must be able to

communicate with analogue circuit simulators.

From a software engineering point of view, the requirements are similar to the ones set

for the diagram editor. The marking system must be designed to support the intended

functionality, be reusable and maintainable, perform well in large classes of students,

and be platform neutral, robust and secure.

4.3.1.3 Requirements for Integrating Diagram-Based Assessment with CBA

Integration with a CBA system that supplies the common parts discussed in section 4.1

is necessary to allow the realistic evaluation of diagram-based assessment. Figure 4.7

depicts a view of the requirements within the fields of CBA, diagramming and

software engineering.

From a CBA perspective, the full lifecycle of a CBA exercise includes the stages of

authoring, running, marking, managing and evaluating the results. Each stage must

be supported. Ceilidh would have been a good candidate system for the integration,

because it supports the full lifecycle of free response CBA exercises. However

4. Identifying Diagram-Based CBA 94

architectural problems concerning its maintainability, performance, platform

neutrality, scalability and expressiveness restrain this decision. These problems could

be rectified with a redesign using standard object-oriented methods. Better

maintainability, performance, platform neutrality, scalability and expressiveness

together with a more robust and secure policy on the design of the assessment process

are the objectives of the new design in software engineering.

As far as diagramming is concerned, the support for the full lifecycle of diagram based

CBA exercises must also include a technique to categorise the various diagram editor

configurations to a suitable organisation that will be useful to authors.

CBA

Diagramming

Software Engineering

Requirements for the full
life-cycle of diagram-based

CBA exercises

Full Lifecycle

Conceptualisation
Authoring
Testing
Deploying

Running
Marking
Administrating

Evaluating Results

Management of Configurations
for Authored Diagram Editors

Functional Design
Reusability
Maintainability
Performance-Scalability
Efficiency
Platform Neurtal
Robustness
Security

Figure 4.7: Requirements for the full lifecycle of CBA

4.3.2 Usefulness

Although this work is directly associated with the evaluation of diagram based CBA, it

also presents deliverables that are useful to various parties within the three fields of

CBA, diagramming and software engineering. Figure 4.8 depicts the levels of users.

For CBA, an authoring system for diagram-based assessment would benefit students,

teachers, and researchers. Students and authors of CBA could cooperate to maximise

both the practical and pedagogic benefits. Researchers in CBA could use the

4. Identifying Diagram-Based CBA 95

authoring environment to adapt its features to originally unpredicted diagram

domains.

CBA

Software Engineering

DiagrammingUsefulness

Students
Teachers
Researchers

SE Researchers
Developers

Users
Researchers

Figure 4.8: Potential for usefulness

In diagramming, such an authoring environment is very useful for traditional use

(printing, typesetting, editing custom notations) as well as for research. Work related

to the use of new diagram notations could employ the authoring environment to build

editors for the new notations.

Finally, the deliverable is also useful to researchers in software engineering that

perceive the architecture as a continuation of a lineage of architectures, from MacApp

to JHotDraw and investigate the evolution of the design. A deliverable with high

software quality is important for the continuation of the development and future

work.

4.4 Summary

This chapter identified the subject of diagram based CBA and the problem areas

involved in its development. Specifically, it has explained that the most important

problem areas are imposed by the customisations needed for the student diagram

editor and for the marking mechanism. For each problem area, a preliminary

discussion that linked the issues involved with research in CBA, diagramming and

software engineering argued for a proposal to design an authoring system. This

proposal has been further investigated in relation to the requirements for each

problem area, and in relation to its feasibility and usefulness. Detailed requirements

have been set that are discussed further in the next chapter.

Chapter 5,

Design,

Objectives and
Design Requirements

Architecture

Design for the Full Lifecycle
of Diagram-Based CBA

Customisable Student Diagram Editor

Generic Marking Mechanism

Integration to CBA

DATsys Framework

Commonality Amongst Diagram Editors

Key Abstractions

Figures

Tools

Commands

Handles

Connectivity

Daidalos

Ariadne

Theseus

Marking Sub-System Key Abstractions

Marking Scheme

Marking Result

Marking Tools

Marking Tool
Configuration

CourseMaster
Key Abstractions

Login Server

Submission Server

Course Server

Marking Server

Archiving Server

Auditing Server

Integration with Diagram-Based CBA

``It is easy to make things hard. It is hard to make things easy''

Myers Brad

5. Design 97

Introduction

This chapter describes a solution to the problem of developing diagram-based CBA. It

presents solutions to each of the three problems identified in chapter 4. The design

meets the needs of the full lifecycle of diagram-based CBA.

The problem of customising the student’s diagram editor to a specific exercise is

approached by designing the DATsys object-oriented framework. DATsys

encapsulates the design of a common base of diagram editors and defines explicit

extension points for new diagram editors. The customisation of these extension points

is made through graphical tools in a way that does not require programming.

The problem with marking any type of diagram can be approached by designing a

generic marking mechanism that can be extended to model new marking criteria. The

design offers abstractions for modelling the marking process that are independent

from the type of assessment. Extensions for the generic mechanism can be developed

and plugged in using Ceilidh’s notion of a marking tool. In this chapter, examples of

marking tools for circuit diagrams, flowcharts, and object-oriented design diagrams

are discussed.

The problem of integrating the DATsys framework and the generic marking system

into a CBA for summative assessment in an academic environment is approached with

a redesign of the Ceilidh system using object-oriented methods. The redesign not only

integrates DATsys and the marking system, but also makes considerable

improvements on Ceilidh’s maintainability, expressiveness, scalability, performance,

security and robustness.

It is not the intention of this chapter to describe in detail every part of the design, only

the most important and interesting parts are presented. The complete design

documents for DATsys, the marking system and CourseMaster consists of

approximately 1900 web pages and can be found in [Ta01], [TS00] and [TS99]

respectively. Chapter 6 discusses implementation issues and shows how the choices

made in the design support the requirements.

5. Design 98

5.1 Design Objectives and Requirements

The main objective for the design of the proposed authoring environment is to allow

research and evaluation of diagram-based CBA. Aiming for an infrastructure that can

be used for research enforces design choices that tend towards sustaining and

facilitating change. Aiming to evaluate diagram-based CBA presumes a functional

design and implementation that can be tested in a realistic setting. It enforces design

choices that consider reliability, usability, scalability, performance and portability.

The idea of making a framework for diagram editors part of the CBA, followed by the

idea of creating an authoring environment to configure the frameworks’ extension

points, exhibit considerable benefits. The student diagram editor can match the

editing requirements for the domain and the exercise. The authoring system can be

used for experimentation in free response diagram-based CBA, an area of CBA that

has not yet been approached.

The potential for variation within the set of possible authored diagram editors is the

degree of the authoring environment’s coverage. The design of the authoring

environment must consider a balance between coverage and simplicity. Simplicity

and usability are very important qualities that are fundamental towards the aim of

making the authoring of diagram-based CBA exercises available to educators from

non-programming backgrounds.

The objectives for the design of the marking subsystem are simplicity, generality,

expressiveness and the potential for use in many domains. Based on the Ceilidh

marking mechanism, the new design must also make improvements on usability,

performance, robustness and security.

The objectives for the integration of the two solutions necessitated the redesign of the

Ceilidh system into a new CBA system named CourseMaster. CourseMaster strives to

maintain Ceilidh’s functionality while providing integration with the authoring

environment for diagram-based CBA and the generic marking mechanism.

Additional requirements are to increase the scalability, performance, maintainability,

extensibility, usability and platform independence of Ceilidh’s distribution.

5. Design 99

An infrastructure that enables the authoring, running, marking and administering of

CBA exercises in diagram domains can be achieved by implementing the design and

by distributing the various responsibilities to the users involved in the assessment

process.

Consider a circuit diagram exercise:

� A course developer uses the authoring environment to build a simple circuit

editor

� A teacher uses a different view of the authoring environment to build the CBA

exercise in logic design by specialising the circuit editor for the exercise,

describing the exercise, and configuring the marking system. It may be

possible to reuse criteria defined in other types of exercises. If it is not, new

criteria can be modelled and plugged-in.

� A student uses the produced circuit diagram editor via CourseMaster to solve

the exercise. Upon submission, the marking system that has been configured

by the teacher automatically marks the student solution and returns feedback.

5.1.1 The Student Diagram Editor

The student’s editor must be usable and reflect the intentions of the exercise author.

The author’s environment must allow the creation of a range of diagram editors, as

well as incorporating the common functions found in diagram editors. The authored

editor must meet the requirements set by the CBA exercise that include the domain-

dependent interactive behaviour of the diagram editor and its application-based

functionality. This functionality is made available by the options available on menus,

buttons, shortcuts, and other GUI primitives.

The authored editor must comply with the requirements of editing a number of

diagram notations and must support a simple mechanism for interacting with the

diagram. The manner in which elements are created, edited and connected in diagram

editors is domain dependent. Therefore, the authoring environment must address the

common and different techniques in:

5. Design 100

� Creating diagram elements

� Selecting elements and interacting with the diagram

� Connecting diagram elements

� Editing the properties of both diagram elements and connections

Standard options such as unlimited undo-redo, constraints to the interaction, and

editing actions such as cutting, copying and pasting should be available. In addition,

mechanisms to customise the application-based options must be included. Examples

of such options are the saving, printing, and loading of diagrams and the invocation of

external tools and specialised functions.

Such an authoring environment can be build by designing and implementing an

object-oriented framework that models the commonality and variation amongst

diagram editors. For each new domain, the commonality can be reused, and the

variation redefined. The variation can be modelled by designing appropriate

parameterisation and extension points. The authoring environment can be both part

of the framework and a tool that configures the framework’s parameters and extension

points.

According to Johnson’s taxonomy of frameworks [JFS99], an important step in

evaluating an object-oriented framework is to derive three application instances.

Typically, the third application instance should be different enough from the other

two to reveal the weaknesses of the framework.

The proposed approach sees the DATsys object-oriented framework being designed as

a black box framework that contains visual tools to facilitate the composition of its

available extension points. In this way, the task of building a new instance can become

a very simple and understandable process. However, the freedom of making choices

for building a new application instance may be constrained. This limitation can be

rectified by designing a level of available extensions for programmers that evolve the

framework in new directions. Furthermore, this extension-level could be made

available to the user of DATsys at runtime, making the evolution of the framework a

dynamic process.

5. Design 101

5.1.2 The Generic Marking Mechanism

The generic marking mechanism must facilitate the marking of new types of exercises

such as logic design, flowchart and object-oriented design. It must also increase the

control over the assessment process. It should be possible to develop new types of

criteria for a wide range of types of exercises, such as music composition, biology,

chemistry, and so on. Additionally, flexible feedback and secure, robust and reliable

running must be planned-for. To test the expressiveness of the marking system, at

least three extensions have to be made in a range of diagram-based domains.

5.1.3 Integration with CBA

The integration of the authoring environment with the generic marking mechanism

has to be seamless in a CBA system that provides the support for running CBA in a

controlled environment for formal marking. As highlighted in the previous chapter,

no system suited the criteria set, hence a new system had to be designed and

implemented. CourseMaster is a redesign of Ceilidh that aims to integrate DATsys

and the authoring system while improving Ceilidh’s software qualities.

5.2 A High Level View of the Overall Plan

There are five types of users within Ceilidh: students, tutors, teachers, developers and

administrators. The responsibilities of tutors and administrators are not affected by

the type of CBA and therefore do not present any immediate interest concerning

diagram based CBA. In contrast, students, teachers and developers have additional

responsibilities. Students must draw the solution within an appropriate diagram

editor, teachers have to author the exercise using authoring tools, and developers must

create elements within new diagram domains.

Developers use the authoring system as a tool to create domain libraries for the teacher

to use. Exercise developers use the authoring system to create concrete exercises.

Students use diagram editors customised to the exercises. This customisation has been

made by the exercise developer, while authoring the exercise. The marking of the

diagram solution is immediate and can be customised in various levels of detail.

5. Design 102

Figure 5.1: Overview of the conceptual plan for diagram-based CBA

Figure 5.1 illustrates the overall solution plan. The course developer prepares diagram

editor specifications and marking tools for a specific domain. These are loaded into

the teacher’s environment and customised further to meet the requirements of the

diagram-based CBA exercise. A newly built exercise contains the student diagram

editor and marking customisations. The student uses the diagram editor to complete

the exercise that is marked via a marking scheme. A marking scheme is a program

that specifies the invocation and configuration of the marking tools. Finally, upon

completion of the marking process, feedback is returned to the student.

5.3 The Design of the DATsys Framework

Detecting the commonality and variation between domain dependent diagram editors

was key in the design of DATsys. The commonality is abstracted into a family of

classes that are distributed into several modules. Frameworks define explicit

extension points that allow developers to describe variation. DATsys defines

extension points in such a way that changes can be made visually, using graphical

tools.

The DATsys architecture has been influenced by frameworks such as Unidraw [Vj90],

Hotdraw [Jr92], and JHotdraw [BG97]. In contrast to these frameworks, DATsys

5. Design 103

defines graphical tools that allow the configuration of extension points. Such tools are

contained in two diagram editors, Daidalos and Ariadne. A third diagram editor,

Theseus, represents the student editor.

Figure 5.2: A view of how DATsys relates to the marking of diagrams

Figure 5.2 illustrates three diagram editors that are instances of the DATsys

framework. Daidalos defines specifications for diagram notations as libraries.

Ariadne uses these libraries to allow the authoring of diagram-based CBA exercises.

The building of a diagram-based CBA exercise consists of describing how the student

editor will function and how the student diagram will be marked. Both Daidalos and

Ariadne are the front-end of the authoring system for diagram-based CBA, where

Theseus is the customised diagram editor that is unique to the CBA exercise.

5.3.1 Commonality and Variation Amongst Diagram Editors

Diagram editors provide options to allow interaction between the user and the

diagram. The interaction takes place directly on a canvas by using the mouse or other

input devices. The available options are presented using simple GUI components

such as menu items, buttons, toolbars, keyboard shortcuts, and so on.

Diagram notations typically define sets of elements that are considered as the tokens

of the diagramming language. For example, circuit editors define gates, electrical

components and wire. Flowchart editors define nodes for actions such as starting,

5. Design 104

ending, running, printing and conditioning. They also define relationships that

graphically represent the direction of the flow using an arrowhead. Object-oriented

tool editors use shapes and relationships to convey design notation.

The editing operations require a data structure to store the elements that are

appropriate to the domain type being modelled. Depending on the functionality and

architecture of the diagram editor, this structure may be a list, graph, tree or any other

suitable data structure.

The interaction between the user and the diagram on the canvas is domain dependent.

The editing actions for circuit diagrams are different from the ones needed for class

diagrams. Diagram editors address the editing features of a diagram notation by

using tools specific to the notation. Tools are selected by the user whilst editing and

they interpret the user’s actions on the canvas. Some editing modes may present a

range of options to the user, therefore further points of interaction may be necessary.

Handles ease the interaction with the diagram by allowing the changing of properties

of the diagram directly.

Depending on the modelled domain, diagram editors have various commands

associated with the diagram and external tools. Application components may be

linked to execute any tasks. The tasks that are available to the user are presented

using GUI components.

As figure 5.3 illustrates, the following concepts represent a common base amongst

diagram editors:

1) Figures: These are drawing primitives that can be put together to create

diagram elements. Drawing primitives include commonly used shapes such

as lines, rectangles, ellipses, polygons, arcs, curves, bitmap images and text

labels. Figures can be composed into groups of figures to any depth of

compositional complexity.

2) Diagram elements: These are the tokens of a diagram notation.

Diagram elements have three main parts:

o A graphical view that consists of drawing primitives

5. Design 105

o A data model that may represent any data

o Connectivity semantics towards the other diagram elements

The graphical view of a diagram element is composed of figures. Any part of

the data model can be linked to the graphical view directly by annotating a

value, or indirectly by relating the value to a graphical characteristic. The

connectivity between diagram elements can be considered a diagram element

itself, with its own graphical view, data model and connectivity.

1.Figures

2.Diagram
Elements

3.Data Structures

4.Handles

5.Tools

6.Commands

7.Application
Components

8.GUI
 Components

Commonality amongst
diagram editors

Line

Rectangle

Ellipsis

Text Label

Curve

...

Polygon

Gate

Resistor

Class-Node

...

Flow Condition

Array

List

Tree

Graph

Resize

Rotate

...

Angle
Select

Create Figure

...

Connect

Move

Undo

Redo

Group

...

Align

Cut

Load

Save

Print

Export

...

Execute

Menu

Button

Toolbar

Canvas

Figure 5.3: Examples of common concepts amongst diagram editors

3) Diagram data structures: These hold the diagram in memory with all of its

diagram elements. Depending on the type of notation, editor, and

performance requirements, this structure may be a list, tree, graph or any other

suitable data-structure.

4) Handles: These allow the changing of some aspect of a figure by employing

direct manipulation. Examples of handles, are the resize, rotate, and connect

handles that appear in graphical applications.

5. Design 106

5) Tools: These are used as ways of interpreting the interaction between the user

and the diagram editor. Common tools in diagram editors implement

functions such as the creation, selection and translation of diagram elements,

the connection between elements, and the editing of data values. In most

diagram editors, tools provide composition of interactions. For example, the

select tool has options for single and multiple selection depending on the

actions of the user. Often the select tool also implements the translation

operation so that users do not have to change the selected tool to move the

selected element.

6) Commands: These are operations on the diagram editor. Commands can be

executed by both the user and the editor. Commands separate the GUI

components from the operations. Commands describe the effects of the

possible interactions as well as the effects of reversing them. The latter aids in

supporting the “undo” operation, a necessary function in modern graphical

editors.

7) Application components: These are components implementing

responsibilities such as saving and loading, configuring, auditing,

importing/exporting, and so on.

8) GUI components: These are graphical primitives used to build the user

interface. Diagram editors employ interfaces composed of GUI components

for selecting options and tools. A key GUI component is the drawing canvas,

where all the interaction between the user and the diagram takes place. In

some diagram editors, the canvas is decorated with grids, scrollbars, rulers,

and allows zooming.

Examples of commonality in handles are the resize and movement handles, the select

and create tools and the commands for the clipboard and for undoing and redoing

previous actions. Common GUI components are the drawing canvas and the toolbar.

Various other standard or custom GUI components are used depending on the

features of the diagram editor. Common application-based features exist for storage

management, printing, presenting help and logging exceptional cases.

5. Design 107

Variation amongst diagram editors can be found on all the eight categories of concepts

described. Figures and diagram elements vary according to the modelled domain.

The type of data structure used internally depends largely on the format of the

diagram elements and the needs of the various application components. For example,

editors for VLSI that manage large diagrams use graph data-structures for optimising

the speed of accessing the relationships between gates.

The operation of handles, tools and commands also vary, although a subset is present

in most diagram editors. In addition, variation exists within the application and GUI

components for the various application-specific features.

5.3.2 Key Abstractions

The main idea behind the design of DATsys is to address both the commonality and

variation amongst diagram editors. Commonality can be modelled concretely and

variation can be modelled through defining extension points and providing

mechanisms for configuration.

Figures can be represented with a hierarchy of classes for all the primitive shapes. All

figures support drawing, unlimited level grouping, connectivity, and application-

based features such as saving, exporting, cloning and executing.

Diagram elements are an important extension point and are designed by the course

developer. For every diagram element, the construction phase involves:

� Drawing the graphical view using primitive figures

� Specifying and associating a data model

� Describing connectivity properties

Diagram elements are compositions of figures with added responsibilities. The

graphical view of a diagram element should be able to be drawn manually or via

programming. In the latter case, a small program could parse any kind of data and

create a graphical representation expressed in figures. The data model of a diagram

element could have elements of any type that may or may not be visible in the

diagram. The connectivity properties may include types, styles and constraints of

5. Design 108

connection between elements. All the characteristics of diagram elements must be

named explicitly to ease the identification that is needed at the marking stage.

Another extension point is needed for the data structure that holds the diagram. The

data structure can be encapsulated within a diagram object that does not allow direct

access to the structure. By adapting the access interface of the diagram to a new data

structure, the data structure can easily change according to the requirements of each

editor.

Tools can be modelled in a hierarchy of standard and user-defined tools. After

assembling the diagram elements of a domain, the course developer must create

additional diagram editing tools. These are user-defines tools that supplement

standard tools such as the select, connect and text.

Handles are modelled with a hierarchy of standard handles such as the resize, rotate,

and radius handles. Handles can be made user-definable for diagram-elements, and

can be linked to attributes of diagram-elements.

To increase the framework’s longevity, GUI components could be modelled using

adapter classes. Adapter classes allow the definition of a standard interface for use

within the framework and for implementing parts that can be exchanged. In this case,

the updated implementations can be part of new graphical APIs.

Finally, in order to vary the applications components, a mechanism for defining and

linking diagram editor options is needed.

Figure 5.4 illustrates the modelled concepts. A DiagramEditor object encapsulates any

diagram editor application. Diagram editor instances are configured with parameters

for the available options, the use and attributes of GUI elements, and various

application level parameters. Instances of DiagramEditor are associated with a

DiagramEditorView that represents the editor’s graphical view with all its GUI

components. The creation of the GUI components is the responsibility of the

OptionMaker.

5. Design 109

curent
Selection

current
Tool

current
Diagram View

Diagram
Editor

WorkBench

Diagram
Editor
View

Command
Manager

Window
Manager

Diagram

Figure

Handle Connector

OptionMaker EditorOption

ToolLibrary

Rectangle

Line

Group

Tool

CreateFigure

Connect

Select

Command
Delete

Undo

Move

...

...

...

Instance

class

has a

is a

associates

Diagram
View

is instance of

Figure 5.4: A high level view of the design of a diagram editor in DATsys

The OptionMaker reads the diagram editor’s available options from a configuration file,

associates commands with these options and represents these as GUI buttons, menu-

items and shortcuts. Additionally, instances of OptionMaker maintain the automatic

switching of the available options as the state of the editor changes. To understand the

editor’s state changes, OptionMaker listens to events spawned by the selection tool, the

clipboard and other sources of change. For example, when the clipboard is empty, the

paste option is switched off and when the current selection is empty, the cut and copy

options are switched off.

A DiagramEditor is associated with a WorkBench object that operates as a façade for

various operations. The Workbench maintains the selected figures on the canvas, the

selected tool, the current diagram view, and a link to the tool library, window

manager and command manager of the diagram editor. These managers are single

instances that have global visibility from all the clients of the system.

5. Design 110

Instances of Diagram represent the data-structure that stores the diagram elements of a

diagram. Upon request, diagrams, much like figures and diagram elements, must be

able to draw themselves. Diagrams are associated with a DiagramView that observes

changes within figures through events, collects the damaged area that needs

redrawing and decides when to issue a message to redraw the screen. In addition,

DiagramView instances hold the diagram, manage the selection, draw the handles and

dispatch the events to the current tool.

5.3.3 Figures

Figures represent the shapes that make up the graphical view of the diagram. Any

simple or complex shape is an instance of a Figure. Primitives include straight and

curved lines, shapes such as rectangles, ellipses, arcs and polygons, text labels, bitmap

images and any other primitive shape that may be needed to draw the graphical

representation of diagram elements.

- Coordinates
- Attributes

- draw, translate, rotate
- send events on change
- compose to groups
- connect
- save, clone
- execute, export

Figure

Ellipse Polygon Rectangle Arc Curve CompositeFigure

DiagramElementGroup

...

FigureChange
Listener

Figure
Enumeration

FrontOrder
Enumeration

BackOrder
EnumerationDiagram

Iterator
Pattern

Composite
Pattern

Observer
Pattern

Figure 5.5: The design for the figure hierarchy

Figures maintain common attributes such as coordinates and colour. For specialised

5. Design 111

attributes, figures manage a hash-table that keeps name-value attributes. In this way,

attributes can be associated with figures dynamically at run-time. Instances of Figure

know how to draw themselves given a graphical context and how to transform their

coordinates to move, scale and rotate.

Figure 5.5 illustrates the design of the Figure hierarchy. On attribute changes, figures

issue and send events to registered FigureChangeListeners. The use of the observer

pattern aids in decoupling the figures from the diagram and the selection editor.

Decoupling figures from the diagram is important, as figures need to know the

changes in connected figures to adjust accordingly. For example, while moving a

connected figure the connection line has to follow. Decoupling figures from the

selection editor of the authoring environment is also important, as the latter needs to

know of changes on the selected figure to adjust its available options.

Figures can be composed to any depth of complexity into groups that are themselves

figures. The composite pattern documents how to create this type of grouping. An

important benefit for using the composite design pattern is that clients of the figure

hierarchy do not need to differentiate between a primitive figure such as a rectangle

and a complex group of figures such as a complete diagram. Specialisations of

CompositeFigure are made by objects DiagramElement, Group and Diagram. Instances of

DiagramElement are built graphically by domain developers. They consist of a

composition of figures together with attributes representing a data model and

instructions that represent connectivity semantics. Group objects encapsulate groups

created for composition while editing. An instance of a Diagram is a specialisation of a

group and inherits all of the group’s children-management features. Its parent, the

CompositeFigure implements the iterator design pattern, and returns

FigureEnumeration instances that encapsulate the traversal of the composite. For a list

structure, front to back and back to front enumerators are needed to allow depth

ordering of the figures and precise hit detection. Figures contain handles that while

dragged change attributes. Figures also contain connectors that encapsulate the way a

figure can be connected to other figures. Finally, figures have application-based

responsibilities and can either service or delegate messages for saving, cloning,

exporting, executing, printing and translating to other formats.

5. Design 112

5.3.4 Tools

Tools act as modes of interaction between the user and the diagram. The user selects a

tool to interact with the diagram. Instances of Tool accept mouse and key events

directly from the DiagramView and interpret them accordingly. Figure 5.6 illustrates a

simplified view of the tool hierarchy.

- process mouse events
- process key events
- activate - deactivate

Tool

Polygon
Tool

Connection
Tool

Text
Tool

CreateFigure
Tool

Select
Tool

Drag
Manipulator

SelectArea
Manipulator

...

Handle
Manipulator

DiagramView

Figure

Events

State
Pattern

Prototype
Pattern

State
Pattern

Figure 5.6: The tools hierarchy

Tools support operations such as creating, selecting, editing, and connecting the

elements of a diagram. A parameterisable CreateFigureTool encapsulates the figure’s

creation behaviour for the click and the click and drag interaction. The latter is used in

elements that need their dimension interactively defined at the moment of creation.

The former is used in most diagrams in which diagram elements have either standard

or automatically adjustable sizes. The CreateFigureTool employs the prototype

pattern for making new instances. A request for returning a new instance sees the

CreateFigureTool cloning its contained figure without having knowledge of its

original type. The decoupling of the CreateFigureTool from the figure’s type,

facilitates the making of new creation tools at run-time. This is a fundamental

extension point of the DATsys framework because additional diagram elements

5. Design 113

require new tools to create them. Figures that have non-standard interaction such as

text labels, polygons, curves and arcs have their own creation tools.

The select tool exhibits context dependent behaviour. In accordance with the user’s

intention it can be used for single or multiple-selection, addition or removal of

elements from the current selection, translation of coordinates, or interaction with

handles. In each of these cases rubber banding gives visual feedback about the

change. In addition, under the select tool, a user can move the selected figures and

interact with their handles. Further specialisations of the select tool can be made so

that the type of manipulation can be encapsulated in separate objects. The use of the

state design pattern separates the state of the select tool from the select tool itself.

Manipulators for handles, for dragging and for selecting an area are state objects that

can be composed and used in other tools. Vlissides refers to a design of manipulators

in Unidraw [VL89] in which the hierarchy of manipulators is separate from the

hierarchy of tools. The decision of keeping the manipulator in the tools hierarchy may

decrease the compositional orthogonality of the manipulators but increases simplicity.

The text tool allows the creation and editing of text labels within the diagram. A text

label is a primitive figure that has a range of properties, such as size, font type, style,

editability constraints, and so on. The text tool cooperates with external tool GUI

components in order to accept configuration for these properties.

Finally, the connection tool creates connections amongst figures. It can be

parameterised with any type of ConnectionFigure. A ConnectionFigure encapsulates

the figure that appears to be connecting two diagramming elements and is typically

represented by figures such as a simple, double or elbow lines with any decoration at

its edges.

5.3.5 Commands

Commands encapsulate the possible actions of a user while editing the diagram.

Command objects maintain the interaction so that its effects can be reversed upon

request. Available commands include actions for grouping, aligning, transforming

and editing attributes of the selected figures, transferring the selection, and interacting

with the canvas. Figure 5.7 illustrates a small portion of the command hierarchy.

5. Design 114

- execute
- undo
- isUndoable

Command

Group
Command

Transform
Command

Align
Command

ChangeFigure
Command

Transfer
Command

Copy Paste

...

Cut DeleteCreate

ZoomIn
Command

ScaleRotateMove

Command
Pattern - Command

- MenuItem
- Toolbar Button
- Shortcut

Editor Option

HistoryList
executes Commands
unexecutes Commands

CommandManager

Figure 5.7: The commands hierarchy

Representing all the interactive actions with commands has many benefits. Firstly, the

GUI can be decoupled from the classes of the editor. The various GUI components can

execute commands using polymorphism, and therefore loose the dependence on their

original type. The initial association of commands to GUI objects occurs at the

initialisation phase through configuration. Secondly, a command hierarchy clearly

partitions the functions of the editor and facilitates future extension. Thirdly, the

addition of a CommandManager that handles command execution, reduces the amount of

effort needed to implement a mechanism for undoing/redoing actions to any level of

complexity. This mechanism has been described in literature as the command

processor design pattern and is described by Buschmann at al. [BMF+96] and

Sommerlad [Sp96].

The command pattern, when used in conjunction with other design patterns, lends

itself to a set of extensions. For example, applying the composite pattern to the

command hierarchy facilitates the creation of macro-commands that guarantee

consistency. Macro-commands can be created by recording user actions and saving

them within a composite command that can be later invoked.

5. Design 115

In DATsys, a command is a property of an EditorOption that keeps together the GUI

representations of the option, the state of the option, and the option’s command.

EditorOption objects are known to the listeners of the GUI components and upon

activation delegate the command object for execution to the CommandManager.

Consequently, the CommandManager executes the command and stores it on its stack of

executed commands.

Additional commands can be created simply by adding new command classes that

adhere to the command interface. Many reusable commands can be configured to

reflect new behaviour. For example, commands for executing external tools,

processing the diagram, connecting elements and many others can be parameterised

to reflect the modelled diagram editor.

5.3.6 Handles

Handles allow the user to interact directly with figure properties such as dimensions,

angles, sizes, and so on. Handles are associated with figures, position themselves to a

location within figures, and encapsulate knowledge on how to be drawn. On a select

operation, the HandleManipulator, if activated, delegates the events to the appropriate

handle object.

- ownerFigure

- draw, locate
- process mouse events

Handle

Arc
Handle

Radius
Handle

Elbow
Handle

Gradient
Handle

Curve
Handle

Locator
Handle...

FontSize
Handle

Null
Handle

Connection
Handle

Direction
Handle ...

Locator

Relative
Locator

Offset
Locator

Strategy
Pattern

Null
Pattern

Figure 5.8: The handles hierarchy

5. Design 116

A range of generic handles can be applied to all types of figures. Specifically, the

handles for changing position and size, rotating and connecting can be applied to any

figure. DirectionHandles for resizing are glued into the figure’s edges and are

available for every figure. These are created by using a HandlesKit that implements a

simple factory pattern.

Special figures may need their own customised handlers. This is the case with figures

such as arcs, curves, and polygons. Figure 5.8 illustrates a simplified view of the

hierarchy for the handles.

Handles can find their position upon the figure that owns them by using an external

hierarchy that implements the strategy design pattern. Locators encapsulate the

strategy for locating the handle’s coordinates on the figure. The design of handlers

caters for two types of location strategies. The first strategy uses offset locators to

calculate an offset from the origin coordinates of the figure. This is a useful strategy to

define a handler’s position as an absolute coordinate on top of its figure. For example,

pin-type handlers on gate components use an OffsetLocator. The second strategy

uses relative locators to find the location of a figure by calculating a coordinate relative

to the existing ones. For example, size handlers use RelativeLocator in order to

guarantee their placement at the corners and middles of the figure.

The NullHandle has been designed as an instance of the null design pattern.

NullHandle handles receive all the events delegated to them but do not exhibit any

behaviour. This eliminates the need for checking whether a handle is set to null.

ConnectionHandle handles can be parameterised with a type of connection so that

users can connect figures during select mode. The FontSizeHandle handle, changes the

size of a text figure. Other handles are unique to concrete figures.

5.3.7 Connectivity

Figures and diagram elements are connected using Connector objects. Connectors

belong to figures, represent points of connectivity and can be linked using objects of

the type ConnectionFigure. Figures can have any number of connectors associated

with them, and these can have a variety of properties. Typical ConnectionFigure

5. Design 117

objects are constructed from lines that may use edge decorations such as arrows or

diamonds.

- ownerFigure

- draw, locate
- find connected figures

Connector

Null
Connector

Chop
Connector

FigureShaped
LocatorConnector

Locator
Connector...

Polygon
ChopConnector

Group
ChopConnector

Ellipse
ChopConnector ...

Figure

- connect / disconnect
- find connected figures
- split / joint segments

ConnectionFigure

Curve
Connection

Figure
Connection

Line
Connection ...

Diamond
Tip

Ball
Tip

Arrow
Tip ...

Line
Decoration

Figure
Tip

Strategy
Pattern

Observer
Pattern

Figure 5.9: The connectors and connection figures hierarchies

Connectors implement the strategy design pattern towards the figure hierarchy. They

encapsulate the strategy of how to connect with a ConnectionFigure, can draw

themselves, and have the responsibility of returning the figures to which they are

connected. Connectors also implement the observer pattern. Upon change,

connectors notify their associated ConnectionFigure objects to automatically adjust.

Figure 5.9 illustrates the hierarchy of Connector, ConnectionFigure and

LineDecoration objects. ChopConnector objects locate their coordinates by chopping

the connection at the shape boundaries of the primitive figure to which they belong.

GroupChopConnector objects do the same, but they belong to groups of figures.

LocatorConnector objects represent connectors with relative coordinates to a figure.

FigureShapedLocatorConnector objects obtain their graphical view and properties

through a representative figure.

5. Design 118

Users of Daidalos create FigureShapedLocatorConnector objects to represent

customised types of connectors. NullConnector objects implement the null design

pattern and support the services defined in Connector but are devoid of

implementation.

ConnectionFigure objects are figures that provide services for connecting and

disconnecting, defining, splitting and joining segments, and returning the figures that

are connected to them. Typically, diagram notations use variations of lines to denote

the relationship of connectivity. LineConnection and CurveConnection are types of

ConnectionFigure that are implemented by poly-lines and poly-curve figures

respectively. ConnectionFigure objects could also be customised with other types of

figures such as rectangles and ellipses.

Both LineConnection and CurveConnection objects can be decorated at any of their

ends with a LineDecoration. Typical decorations include arrows, circles, diamonds

and boxes, of various styles and properties. FigureTip objects can be created by the

user to represent a new type of relationship for a diagram notation.

5.3.8 Daidalos, the Environment for Authoring Diagram Notations

Daidalos is the authoring environment that allows the specification of diagram

notations. As a DiagramEditor object, it follows the architecture described in section

5.3.2. Daidalos needs additional parts to create new figures, diagram elements, tools

and commands. In contrast to other instances of DiagramEditor, Daidalos defines tools

for making all these parts. In addition, Daidalos needs a selection editor that allows

the editing of various properties, functions for the management of libraries of diagram

notations and other options helpful for the authoring of new domains.

Daidalos could be considered as a meta-diagrammer, as it provides a graphical

process for making parts for new diagram editors. The construction of these parts has

to be interactive and simple for diagram-based CBA authors. Specifically, Daidalos

must allow authors to define:

� Diagram elements with their graphical view, data model and connectivity

� Tools that describe the interaction with diagram elements

5. Design 119

� Options and their links to commands

For the first task, Daidalos offers features for drawing graphical views to represent

diagram elements. A range of primitive shapes and multi-level grouping features are

available. Daidalos also supports the specification of a data model within a diagram

element. The data model may have elements that can be visible or invisible, editable

or non-editable. Connectivity properties can be specified visually. Connector objects

can be defined as pins, perimeters of shapes, or custom made figures.

ConnectionHandle objects can be associated to connectors that can be configured to

create any type of ConnectionFigure. The ConnectonFigure most often used in

diagram notations is a type of Polyline and this can be specified for its view, type, and

decoration.

For the second task, Daidalos presents the user with facilities to manage libraries of

tools. It defines the concept of a domain library and a tool library. Domain libraries

are composed of tool libraries and tool libraries contain tools. Daidalos has functions

to edit, load/save domain tool libraries, and create tools. Daidalos’ functions for

creating tools depend on the selection. By using the selection’s contents, Daidalos

chooses whether to make a tool for creating a figure, diagram element or connection.

Any of the standard tools can be reused and become part of a new tool library.

For the third task, Daidalos allows creating a specification for defining the available

options of a new diagram editor. Many editing options are unnecessary for specific

diagram editors, especially when the diagram editor targets learners. For example, a

zooming option for an editor of simple circuits is unnecessary, while for an editor that

targets a complex flowchart exercise it is indispensable. Daidalos can accept new

commands that can be linked to new options and used throughout the editors

produced using DATsys. New commands can access the WorkBench object of an editor,

link to the internal state of the editor, and provide any new feature.

5.3.9 Ariadne, the Environment for Authoring Exercises

Ariadne is the authoring environment for the specification of diagram-based CBA.

Similarly to Daidalos, Ariadne is a subclass of DiagramEditor and follows the

architecture described in section 5.3.2. Ariadne allows the specification of:

5. Design 120

� The student diagram editor

� The exercise properties that are required by the CBA software

� The marking scheme that marks the diagram and returns feedback

The first task is supported by providing features for a further specialisation of the

student diagram editor in respect of its tools, and its available options. Ariadne

imports domain tool libraries specified in Daidalos and allows exercise authors to

select the correct tools for a student diagram editor.

For the second task, Ariadne needs editing facilities for defining the properties of a

CBA exercise. Properties include the exercise’s question, weight, and various other

types of information described in section 6.4.3.

The third task involves providing facilities to edit and test the marking scheme of an

exercise. This can be done by incorporating a simple source-code editor into Ariadne

and providing simple compilation and testing features. Finally, for the completion of

the marking scheme, configurations for the marking tools that have been used should

also be given.

5.3.10 Theseus, the Student Diagram Editor

Theseus is the diagram editor that is used by the students to solve the diagram-based

CBA exercise. Theseus is represented with a subclass of DiagramEditor. All of

Theseus’ features are described as parts of its configuration. This configuration

includes the exercise specific tool library and a specification for the available options.

The tool library contains domain and exercise specific tools that use custom-made

diagram elements. The diagram element’s view, data model and connectivity have

been described in the creation of the diagram element. The students can thus use the

tools to solve the particular type of exercise by interacting with the tools, the canvas,

the diagram elements and the various options.

Theseus should allow students to create a wide range of diagrams in many of the

domains discussed in section 2.2.3. Theseus’ GUI components can change by further

parameterisation of Theseus with a new OptionMaker. In this way, Theseus can accept

any type of component that is not available through configuration.

5. Design 121

5.3.10 Summary

This section highlighted the main concepts in the design of DATsys and the three

diagram editors that facilitate the authoring of diagram editors specialised to CBA

exercises. The design of DATsys defines abstractions for making new diagram editors

in a range of domains and explicit extension mechanisms for adding functionality.

Amongst the three diagram editors, Daidalos and Ariadne can be considered

authoring environments that are used to create diagram-based CBA exercises.

Daidalos provides functions for defining new notations and Ariadne provides

functions for defining CBA exercises. Theseus is the student diagram editor that is

uniquely customised, by the Ariadne user, to the requirements of the exercise.

5.4 The Design of the Generic Marking System

To facilitate experimentation with marking criteria in diagram-based exercises, an

extensible marking system was designed that can be flexibly configured. Key concepts

in the marking process of CBA coursework were modelled and explicit extension

points were set for describing new metrics. In addition, the design included a

technique to return immediate feedback and addresses concerns surrounding security,

robustness and reliability.

Extensions for diagramming have been made for marking simple circuit diagrams,

flowcharts and object-oriented designs. Extensions for programming have been made

to assess Java and C++ programs. Guides on how to extend the marking system have

been given in [HST02] and [Sp01].

5.4.1 Key Abstractions

The design of the marking mechanism is based on Ceilidh’s approach of marking

tools. The idea of marking tools has been a significant contributor to Ceilidh’s success

as a CBA system. Marking tools can be configured and used in new types of courses

that were not anticipated during their development. Design improvements to

Ceilidh’s marking tools focused upon the expressiveness of the marking process, the

configuration and composition of the various tests and the description of the student

feedback.

5. Design 122

Marking Scheme

Marking Tool 1

Student Solution Marking Result
and Feedback

Marking Tool 1
Configuration

Marking Tool 2

Marking Tool 3

Marking Tool 2
Configuration

Marking Tool 3
Configuration

Exercise
Specific

Configuration

Available Marking Tools

Figure 5.10: A plan for a generic marking mechanism

The following concepts are identified for a general marking process:

� Marking Scheme: This describes the marking of any automatically assessable

exercise. It is developed by exercise authors and is part of the exercise’s

configuration files. A marking scheme contains invocations to marking tools

that have been configured for the specific exercise. It also relates weights to

each marking test and builds the result mark is returned to the student.

� Marking Result: This is a tree structure that mirrors the execution of marking

tests. Leaf nodes contain the mark and student feedback for the specific test.

Group nodes contain the combined mark of their children and appropriate

feedback.

� Marking Tools: These encapsulate types of marking criteria for specific

domains or for generic use. Marking tools need exercise-based configuration

to execute. Upon completion, marking tools return marking results.

5. Design 123

� Marking Tool Configurations: These are configurations specific to marking

tools and to exercises. Marking tools may use any form of configuration to

specialise to the requirements of the exercise. CourseMaster uses regular

expressions in the configuration of marking tools and associates weights and

simple feedback with the result.

Figure 5.10 illustrates the main concepts for the generic marking mechanism. The

student solution is sent to the marking scheme that invokes marking tools. The

marking tools execute after being set to use exercise specific configurations. When the

execution of all the marking tools is finished, marking results along with feedback are

returned to the student. Any type of CBA marking can use this design so long as the

appropriate marking tools and their configurations can be identified, designed and

implemented.

5.4.2 Marking Scheme

The marking scheme is an evolved progression of Ceilidh’s marking action. As

explained in section 3.1.5, Ceilidh allows exercise authors to describe the marking

process as a simple sequence of invocations defined in a “mark action”, which is a

configuration file. Each line of this configuration file has two elements:

� Name of the marking tool to be invoked

� Highest mark that the marking tool could contribute to the overall mark

The advantage of having a mark action as a property of an exercise is that new

marking tools can easily be invoked for new exercises. The necessary configurations

to the marking tools are placed into separate files that are stored together with other

exercise related files. Although this method simplifies the authoring of exercises, it

does not incorporate control structures for a finer grain customisation of the

assessment for each exercise. Furthermore, Ceilidh’s marking can only be extended

through the implementation of new marking tools. For any small deviation from the

functions of a marking tool, a course developer has to create new marking tools.

The restrictions of Ceilidh’s marking action could be rectified if the marking action

was a program, expressed in an imperative language. Customisations within

programs can handle unanticipated extensions much better that within simple

5. Design 124

configuration files. Such programs could be made to invoke marking tools and to

return results to the student. The clear limitation of this approach is a risk of

decreasing readability. However, this risk can be partially rectified by restricting and

simplifying the program, by using easy to understand aliases, or even by creating

“wizard” tools to generate the program.

- MarkingArea

- mark exercise
- log, audit

MarkingScheme Marking
Area - Feedback, Verbosity

- Marking Scale
- Exercise Specific Attributes

Marking
Properties

- Exercise Solution Files
- Student Profile

Student
Project

- Exercise Properties
- Marking Tool Configuration

Marking
Project

Exercise Specific
Marking Scheme

Figure 5.11: The marking scheme and its relationship to other data

Figure 5.11 illustrates the idea of designing the marking scheme as a program that is

described within a class MarkingScheme. A description of the source for this class

must be available for any assessable exercise. To mark an exercise, the appropriate

marking scheme needs to be instantiated and executed. Instances of the MarkingScheme

class need to obtain information related to the marking properties of the exercise, the

student project, and all the exercise specific configurations of the marking tools. For

simplifying the gathering of this information, MarkingArea is a facade object that

contains the data a marking tool may request.

As the marking scheme of exercises is a program, control structures can be used

together with other marking preferences. In addition, new marking tools, marking

configurations, and external tools can be added with little effort.

5. Design 125

5.4.2 Marking Result

After marking an exercise, marking results return to the student. Exercise marking

results must be descriptive, comprehensive, and presented to the student

unambiguously. Every marking tool creates and returns a group of marking results

with as many results as the tests executed by the tool. As every marking test

contributes to the creation of the overall marking results, an object MarkingResult can

hold enough information to create both descriptive and comprehensive overall results.

Specifically, a MarkingResult can hold:

� An absolute percentage value that represents the attributed mark

� A weight value that represents the importance of the marking criteria that

created the marking result

� A description for the type of marking

� Feedback information for specific aspects of the exercise’s marking

� A style for rendering the marking result to the student

- MarkValue, Weight
- Description, Feedback
- GradingStyle
- set/get attributes
- calculate overall mark
- scale mark
- print, save

MarkingResult

Simple
MarkingResult

Composite
MarkingResult

AlphaNumeric
GradingStyle

Percentage
GradingStyle

- Range, Colour Range

- translate marking
- translate to colours

GradingStyle

Composite
Pattern

Strategy
Pattern

Figure 5.12: Marking results are associated with a style for rendering the marks to students

Figure 5.12 depicts, an abstract MarkingResult that can be either a SimpleMarkingResult

or a CompositeMarkingResult. When marking tools execute marking criteria, they

5. Design 126

instantiate SimpleMarkingResult objects and aggregate these to

CompositeMarkingResults objects. As marking finishes, all the

CompositeMarkingResult objects returned by the top level marking tools, are composed

into a root CompositeMarkingResult object that represents the overall mark.

Two design patterns are applied to the design of the marking results. Firstly, the

composite design pattern between MarkingResult and CompositeResult allows the

nesting of results into larger groups. Secondly, the strategy design pattern between

the MarkingResult and the GradingStyle, objectifies the rendering of marking results

into GradingStyle objects.

The overall mark can be calculated and scaled in a simple manner by adding a

polymorphic method that traverses the tree structure using a depth-first algorithm.

MarkingResult instances support the printing and saving into contexts that are

supplied as parameters.

In Ceilidh feedback to the student is limited to a mark composed of the results

obtained by the marking tools that participated in the marking process. No direct

justification explains the loss of marks to the students. In addition, no explanation is

given in order for the student to improve their mark. One benefit of using a tree

structure for representing the results is that feedback with more details and precision

can be created and presented to the students.

A GradingStyle encapsulates the rendering of the marks to the students. Grading

styles exist for associating alphanumeric values to the marks, changing scale ranges,

and linking presentational attributes such as colours and shapes. The exercise author

can choose whether the student’s mark is to be displayed in a numeric or in an

alphabetic scale. The association between numeric values, letters, colours and shapes

can be chosen through configuration.

5.4.3 Marking Tools

Marking tools encapsulate a specific test or series of tests that execute against the

student solution. The abstraction that guides the design for marking tools is simple:

marking tools execute and return an instance of a MarkingResult. Instances of

MarkingTool objects can start marking when connected to a marking area. A marking

5. Design 127

area represents a conceptual area where the exercise marking takes place. It contains

information necessary for the execution of marking tools for the specific exercise.

Marking tools need to know all the exercise-based marking properties, the student

coursework project and the marking project. The marking project contains all the

exercise-specific configurations for the marking tools.

- MarkingArea

- mark

Marking Tool

Programming
Marking Tool

MCQ
Marking Tool

Essay
Marking Tool

Diagram
Marking Tool...

Program-Features
Marking Tool

Dynamic Test
Marking Tool

Compilation
Marking Tool

Typography
Marking Tool

Circuit Simulation
Marking Tool

ERD
Marking Tool

OO Design
Marking Tool

......
Flowchart

Marking Tool

Marking Result Marking Area

Marking
Properties

Student
Project

Marking
Project

Figure 5.13: The hierarchy of marking tools for programming and diagram-based courses

Figure 5.13 depicts the hierarchy for MarkingTool objects and their association with the

marking area. Marking tools can be developed for programming courses, MCQ’s,

essays and diagramming. Configurations for new marking tools must always be

available within the MarkingArea at execution time. In addition, the MarkingArea holds

the data that belongs to the student’s submission.

Diagramming marking tools, after their conceptualisation, can be implemented with

relative simplicity. The student diagram, being associated with the marking area, can

be instantiated and is available as an object to the marking tools. It can be queried to

provide information for its structure, its diagram elements and their relationships.

For example, a logic-simulator marking tool can use the names of the diagram

elements to associate logic behaviour and simulate the circuit. An analogue circuit-

simulator marking tool can export the diagram’s structure in an appropriate format,

5. Design 128

and use an external tool to simulate and test the correctness of the diagram. A

flowchart diagram marking tool can generate the source code of a program, execute it,

and then use the dynamic marking tool, implemented for programming courses, to

test the output in relation to the input. An object-oriented-design marking tool can

run exercise specific metrics by configuring the feature marking tool of programming

courses, or translate the diagram and use external metric tools.

5.4.4 Configuration of Marking Tools

Each marking tool is associated with exercise specific configuration that must be

specified in an appropriate format. The tools discussed in section 5.4.3 could

conveniently use Ceilidh’s marking tool configuration mechanism that is based on

oracles. Oracles are search criteria expressed using regular expressions. Oracles are

described in detail in [FZ93].

The configuration of marking tools may contain the range of feedback appropriate to

the exercise and student. For the former, feedback must be distributed to appropriate

marking ranges. For the latter, a mechanism must be devised to use the student’s

profile and history to select the appropriate feedback.

5.4.5 Summary

This section highlighted the key concepts for the design of a generic marking system

that can be used to mark student coursework. The design suggested having, for every

exercise, a marking scheme expressed as a program in an imperative programming

language that invokes and configures appropriate marking tools. It also defined a

technique for the composition of results and the running of marking tools. A newly

written marking tool has all the information it needs to execute and return a marking

result. This information includes the various marking tool configuration files that

have no restriction on their encoding format. The generic marking system can be seen

as an open system that accepts plug-in marking tools and configurations to allow their

execution. Marking tools can be designed and built for any type of assessment as long

as the criteria for the assessment can be automated.

5. Design 129

5.5 The Design of the CourseMaster CBA System

CourseMaster is a redesign of the Ceilidh system that aims to integrate the diagram

editor authoring system and the generic marking system while improving Ceilidh’s

scalability, performance, maintainability, extensibility, usability and platform

independence.

5.5.1 Key Abstractions

In an effort to reorganise Ceilidh’s functionality in a more extensible way, the

dependencies, commonalities and variations between Ceilidh’s tools and data layer

are identified. The commonalities are abstracted into class hierarchies. Explicit

extension points are defined together with parameterisation for all the variation.

- submit exercise
- attach Login Server
- get submission attempts
- get receipts for modules

Submission Server

- mark exercise
- attach course server proxy

Marking Server

- archive submissions
- query for existing work
- return receipts for modules
- audit to logwriters

Archiving Server

- manage LogWriters

Auditing Server

- get modules
- get marking project
- get info on modules
- setup exercise

Course Server

- manages servers
- can reload servers at runtime
- returns the structure of a
course

Ceilidh Server

- login / logout users
- register users
- validate sessions

Login Server

Student Client

1 : login 2 : get course
structure

3 : get module
info and setup

4 : submit
exercise

5 : mark
exercise

6 : archive
results

Figure 5.14: The organisation of CourseMaster servers

The dependencies between Ceilidh’s parts can be decreased by separating the various

responsibilities between seven logical parts. These parts can be designed as servers

that operate as remote objects. Each server manages an associated file-store. Figure

5.14 illustrates a high level view of the relationship between the servers and shows the

5. Design 130

walkthrough of a student submission. Every server is decoupled from the others so

that it can operate independently. For the internal communication between servers,

proxy servers can delegate the messages, and common objects can be exchanged.

The login server is responsible for maintaining the user database and providing

authorisation and registration. It also provides session validation services to the other

CourseMaster servers. The course server manages course material and responds to

related requests.

The submission server is a façade of the marking system and contains the logic to

decide between accepting and rejecting a submission. The rules for this decision take

into consideration exercise specific properties such as the state of the exercise and the

number of available submissions, as well as student specific properties such as the

number of submissions already spent, permissions for late submissions or additional

submissions, and so on.

Upon validating the student submission, the submission server sends it to the marking

server and expects a marking result. The marking server executes the generic marking

mechanism described in section 5.4. Marking tools compose the exercise’s overall

marking result that is returned to the submission server and sent to the archiving

server. The archiving server stores the student submission together with the marking

result and issues an archiving receipt. The submission server uses this to issue a

submission receipt that contains the marking result. At this stage the submission

server associates the appropriate grading style with the marking result and returns it

to the student.

The auditing server maintains auditing for a set of predefined functions of

CourseMaster. All the other six servers communicate with the auditing server to log

information to files or network sockets. The ceilidh server manages the interaction

between servers by setting-up appropriate proxy servers. In addition, it builds and

returns to students the module structure of a course. CourseMaster’s servers inter-

communicate using a set of objects that are exchanged between all parts. Table 5.1 lists

the objects and describes their meaning.

A student makes a submission to the submission server, and expects a receipt issued

from the archiving server and a marking result from the marking server. A course

5. Design 131

module is sent to the student after logging in, to allow browsing and selection of the

appropriate unit and exercise.

A project is an object from a hierarchy of classes that represent the type of assessment.

Projects represent any type of assessment and contain basic information about

filename extensions, student exercise environments, and so on. Objects of the type

MarkingProject contain all the configurations for the marking tools of an exercise.

GenericProject objects can be customised at runtime to specialise even further the

type of a project.

Common Objects Description
Submission Contains all the data of a student’s coursework solution, includes

student information and carries security related sessions keys.

MarkingResult Represents a single or composite assessment result for a student’s

solution. It carries feedback for each of the assessment criteria.

Receipt Confirms the completion of a submission. It is issued by the

archiving and submission servers and is sent to the client.

CourseModule Embodies a whole course, unit or exercise. Every level has its own

structure and properties.

Project Encapsulates the type of assessment. CourseMaster provides classes

for projects in programming, diagramming, and essays.

Table 5.1: CourseMaster’s basic objects for communication between the servers

5.5.2 Login Server

The login server manages the authorisation of users in CourseMaster. To increase

security, the login server has an external and an internal interface. The external

interface allows the authorisation and registration of users. The internal interface can

be seen only by CourseMaster servers and supports authorisation for all user requests.

After validating a user, the login server asks a session manager to create a connection

for the specific user. The session manager generates a session key, associates it with

the user and clones an appropriate Connection object to send back. Clients can access

5. Design 132

CourseMaster servers only through this connection object. The benefit of this design

decision is that clients do not know explicitly the location of CourseMaster servers and

therefore changes to the distribution of CourseMaster servers are transparent to the

clients. This can be very useful in the case of adding load-balancing features to

increase scalability and performance.

The session manager maintains all the created sessions and provides validation for

sensitive tasks such as coursework submission and retrieval of previous marks and

solutions. When a student exits, the session is destroyed. If a student logs in from

another location, the session is replaced. Each session is date and time stamped,

logged and audited.

- logins/logouts users
- registers users
- validates session

Login Server

- sessions hashtable

- add/remove sessions
- update sessions
- validate sessions

Session Manager

Logging
Action

Registration
Action

- LogWriter

- logins/logouts users
- registers users
- validates session

Login Action

Validation
Action

FileLogin
Reader

POP3 Login
Reader

Login Reader

- Session Key
- Addresses for Servers

CM Connection

Figure 5.15: A high level view for the design of the login server

Figure 5.15 illustrates a view of the design of the login server. A LoginServer,

depending on the nature of the request that it services, instantiates a logging,

registration or validation action and executes it. A logging action uses a LoginReader

instance to locate the password. The password may exist in a file, a POP3 server or

any other server that offers validation services.

5.5.3 Course Server

The course server manages all the available modules and their data. On initialisation,

the course server reads the file-store to build the structure for the modules. Modules

5. Design 133

are tree structures with four types of nodes. System modules are composed by course

modules that contain unit modules. Unit modules contain exercise modules.

A Module object can build itself by delegating the building message to its children.

Figure 5.16 illustrates the relationship between a course server and its modules. Every

node has attributes. For example, a course module has a name, a title, notes and a

summary. The properties of exercise objects are described in a property file that

contains name–value pairs of variables. On the construction of a module, the exercise

properties are read and are represented by objects of the type ExerciseProperties.

Attributes within the ExerciseProperties contain parameters for various aspects of

the exercise’s configuration. For example, an exercise’s skeleton name, the maximum

allowed number of submissions, availability status (e.g. open/closed/late) and many

other properties described in [TS99].

- gets modules
- gets marking project
- gets specific info on modules

Course Server

System
Module

Course
Module

- Name, Title
- builds module

Module

Unit
Module

Exercise
Module

- specific to the
type of project

Exercise
Properties

Figure 5.16: The course server is responsible for creating and managing course modules

Exercise properties in the Ceilidh system are inherited from the unit, course and

system levels. Therefore, properties like the maximum allowed number of

submissions can be specified for a whole unit and can be overridden for a specific

exercise. Although it was anticipated that this mechanism would decrease the

unnecessary repetition of properties, it was observed that it actually hinders

readability and maintainability. CourseMaster omits the inheritance mechanism for

the properties of exercises. Each exercise has a separate property file that contains all

5. Design 134

the required parameterisation. Further parameterisation can be made to address the

configuration of other types of assessment such as diagramming and generic courses.

5.5.4 Submission Server

The submission server accepts student submissions and sends these to the marking

server. Upon completion, the submission server contacts the archiving server and

makes a request to archive the submission.

- allows exercise submission
- ensures session exists
- decides whether to mark
- sends project for marking
- initiates archiving
- returns submission receipt
with the marking result

Submission Server

- ID, Time stamp
- MarkingResult

Submission Receipt

- executes exercise
submission logic

Submission Action

- MarkValue, Weight
- Description, Feedback
- GradingStyle

- set/get attributes
- calculate overall mark
- scale mark
- print, save

MarkingResult

Simple
MarkingResult

Composite
MarkingResult

Login
Server

Course
Server

Marking
Server

Archiving
Server

Auditing
Server

1 : validate

2 : get exercise
properties

4 : archive exercise
issue receipt

3 : mark
exercise

5 : audit in all
stages

Figure 5.17: The order of messages for a single submission

The submission server decides whether to proceed with a submission after checking

some rules: the exercise must be open for submission, the student must have at least

one submission left, unless it is specified otherwise by a property of a late or extra

submission. At the end of the submission process, the submission server issues a

receipt that has a unique identity, a date and time stamp and the submission’s

marking result. The marking result is scaled according to the scales of the course and

exercise. A GradeStyle object is associated with the marking results and customises

their view as they appear to students.

5. Design 135

Figure 5.17 illustrates the order of invoked services to complete a submission. It also

shows a simplistic view for the design of the submission server as it relates to the other

parts of CourseMaster. The execution of the logic that decides whether to permit the

submission is within a SubmissionAction object. This gets instantiated by the

submission server for every submission request.

A submission action has to first contact the login server to validate the session. Upon

confirmation, it has to query the course server to receive the exercise’s properties and

marking properties. At the next stage, the SubmissionAction object has to send the

student submission to the marking server, to receive the marking result and to send

the submission to the archiving server for storage. Finally, it has to issue and return

the submission receipt by configuring the marking result according to the properties of

the exercise, and place it within a new submission receipt.

5.5.5 Archiving Server

The archiving server manages the archiving of student work and marking results. In

addition, upon request, it returns stored coursework or marks for exercises, units, and

courses. For security reasons, students shouldn’t have access to the archiving server.

The archiving server services are provided via delegation by the submission server.

Figure 5.18 depicts a high level view of the archiving server and the archiving action

hierarchy. Upon request, the archiving server constructs an ArchivingAction object

and requests it to execute. ArchivingAction objects model the actions of storage and

retrieval of normal and late submissions.

Additional behaviour within the late submission action can define various strategies

for dealing with late submissions.

5. Design 136

- archives submissions
- supports querries for
existing submissions
- returns receipts for
exercises, units, courses
- audits to logwriters

Archiving Server

Archiving
Action

Retrieving
Action

- LogWriter

- archives submissions
- issues receipts
- checks security

Archiving Action

Late Submission
Archiving Action

Figure 5.18: The archiving server and the archiving action hierarchy

5.5.6 Auditing Server

The auditing server is visible to all CourseMaster servers. Each server employs the

auditing server accordingly to its auditing configuration. Four levels of log messages

have been considered in CourseMaster:

� Level 0: Normal Auditing

� Level 1: Detailed Auditing

� Level 2: Troubleshooting

� Level 3: Debugging

In terms of auditing interest, logging of the appropriate level is outputted to LogWriter

objects that have been registered with the auditing server. LogWriter objects can be

grouped into MultipleWriter objects and broadcast messages. Every LogWriter

instance has an associated LogSink instance that represents the sink for printing the

output. Possible sinks include files, the screen and sockets.

5. Design 137

- adds LogWriters

Auditing Server

Single Writer Multiple Writer

- Log Sink

- loggs messages
tagged with the level
and type of message

LogWriter

FileLogSink ScreenLogSink SocketLogSink

- print text

LogSink

Figure 5.19: The auditing server and the LogWriter and LogSink hierarchies

 Figure 5.19 illustrates a view of the design for the auditing server. CourseMaster

servers register a LogWriter object with the auditing server and directly print log

messages to their LogWriter object. According to the server’s runtime configuration,

LogWriter objects can be assigned to any instances of LogSink objects and filter an

appropriate level of messages before printing. In large classes of students, both

auditing and live monitoring of the execution of the servers are necessary features that

not only improve security but also aid the administration tasks.

5.5.7 Integrating CourseMaster with DATsys and the Marking System

CourseMaster integrates a diagramming type of project that invokes Theseus. The

diagramming type of exercise, in addition to the regular exercise files, includes a tool

library and an application configuration file. Both configuration files are generated by

Ariadne, are part of the coursework project that is sent to the student, and configure

the student editor to the editing requirements of the exercise.

Within Theseus, when a student solution is to be saved, all the diagram elements with

all of their details are saved. The diagram is restored to the marking area and can be

processed in code defined in diagrammatic marking tools. A wide range of options

allows traversing, translating, converting and understanding the diagram.

5. Design 138

Identifying the elements of the diagram in most diagram notations is necessary and

requires the naming of the elements within Daidalos. The diagram object is accessible

to marking tools and can identify diagram elements with specific properties. All

diagram elements can be queried concerning their connectivity and data model.

Translating the structure of the diagram requires associating tags to the nodes and

relationships of the diagram and invoking the exporting feature of the Figure class.

Diagrams can return FigureEnumeration iterators that encapsulate the traversal of the

diagram. Traversals can be described externally as well, because every

ConnectionFigure object can return the diagram elements to which it is connected.

The generic marking system is managed by the marking server that, similarly to other

CourseMaster servers, instantiates an action object. The marking action sets up the

marking area and executes itself. Exercises that use new marking tools can plug into

the system at run-time.

As a diagram-based CBA authoring environment, Ariadne is necessarily coupled with

CourseMaster. Ariadne needs to have knowledge of the files that describe the exercise

configuration of a diagramming project. Ariadne’s options to build exercises are

based on the format of these files.

Finally, Daidalos has been designed to operate completely independently from

CourseMaster.

5.5.8 Summary

CourseMaster’s design improves Ceilidh’s design and integrates cleanly with the

DATsys framework and the generic marking mechanism. Ceilidh’s tools and database

layers are broken into seven servers that can be distributed on a network. Each server

manages its own file-store and is contactable in a secure way by the other servers. The

seven servers together with the necessary abstractions that model standard CBA

concepts support similar functionality to Ceilidh. However, CourseMaster’s

architecture has better foundations for flexibility, maintainability, scalability,

performance, robustness and portability. The next chapter illustrates how the design

decisions increased all these software related qualities. The integration of DATsys

with CourseMaster required the addition of a new project type together with the

appropriate marking tools and configurations.

5. Design 139

5.6 Summary

This chapter presented the design for an authoring environment and platform for the

support of the full lifecycle of diagram based CBA. The authoring environment

contains the DATsys object-oriented framework and three diagrammatic editors.

Daidalos is a diagram editor that allows course developers to define abstractions for

providing diagram notations. Ariadne uses these abstractions to allow exercise

authors to create diagram-based CBA exercises. Theseus is the student diagram editor

that is customised to the specifics of the exercise. Theseus options, editor tools and

available diagram elements are configured on a per exercise basis by exercise

developers.

The platform consists of the generic marking mechanism and the CourseMaster

system. The generic marking system uses a marking scheme configuration per

exercise to describe the invocation of marking tools. A programming language is used

to express this description for increased extensibility and expressiveness. The generic

marking system defines abstractions for domain dependent marking tools and their

configuration and marking results. CourseMaster is designed with the intent to

integrate DATsys and the marking system to a CBA, but also to improve on the

existing Ceilidh’s software qualities. The next chapter describes the implementation of

the architecture and the designs described in this chapter.

 Chapter 6,

Implementation

Objectives

Requirements

DATsys

Marking System

CourseMaster

Implementation
View

To Suppot the Full Life-Cycle of
Diagram-CBA in a Feasible and Useful Way

To Solve the Problems of
The Student Diagram Editor

Marking Diagram Exercises

Integrating to CBA

Functionality

Student Diagram Editor

Author Diagram Editor

Generic Marking System

Diagram-Based CBA system

Usability
Student View

Teacher View

Developer View

Software Quality

Overall Implementation

Daidalos

Ariadne

Theseus

Overall Implementation

Diagram Based Marking Tools

Overall Implementation

Clients

Servers

Integration with
diagram-based CBA

“ I would rather write programs to help me write programs than write programs”,

Dick Sites, 1974

6. Implementation 141

Introduction

This chapter presents a reference implementation for this research. This consists of the

DATsys object-oriented framework, the developer’s authoring environment Daidalos,

the teacher’s authoring environment Ariadne, the student’s diagram editor Theseus,

the generic marking system and the CourseMaster CBA system.

Daidalos is a meta-diagramming editor for creating libraries of diagrammatic elements

and templates for new domains. It contains functionality that allows the runtime

parameterisation of predefined extension points. CBA authors use Daidalos to create

customised student diagram editors that are unique to a CBA exercise. Ariadne

provides functions for the construction of the automatically assessable exercises in

diagram domains defined by Daidalos. Its users are exercise developers that author

all the relevant information to create a diagram-based CBA exercise. The final

diagramming editor, Theseus, is the student environment that is customised to both a

specific domain and an exercise.

The objectives for the implementation of each part are set out in section 6.1. Section 6.2

describes the requirements for the implementation and the user views. It also

discusses issues relating to software quality and general usefulness. Sections 6.3 to 6.5

present how DATsys, the generic marking system, and CourseMaster implement the

design described in chapter 5.

6.1 Objectives

The main objective of this research is to investigate the feasibility and usefulness of

designing an authoring environment for diagram-based CBA. Section 4.2.3 has

explained that building an implementation which can be practically tested under real

conditions is fundamental to evaluating the design’s feasibility and usefulness. The

implementation considers issues related to software quality, diagramming and

education technology.

The implementation strives to meet the following goals:

6. Implementation 142

� To implement the design for the customisation of the student diagram editor,

to bind the editor with the generic marking system and to integrate these with

an implementation of CourseMaster

� To provide features for supporting the full lifecycle of diagram-based CBA

� To address software quality issues

� To provide a realistic and extensible infrastructure in which diagram-based

CBA can be researched and evaluated

6.2 Requirements

In light of these objectives, initial effort aimed at establishing the system and user

requirements for each implementation. The requirements identify what the

implementation should do (functional requirements) and how to do it (usability and

software quality requirements).

The implementation requirements for each software part are:

� To support the functionality needed

� To address usability for all parties involved

� To satisfy software quality considerations

The next sections describe in details each set of requirements.

6.2.1 Functionality

A series of features must be implemented to support the full lifecycle of diagram-base

CBA. In addition, for every stage of the lifecycle of a CBA exercise and for every

participating type of user, the implementation must provide appropriate views and

must link these to the available features.

The authoring stage encompasses the two main tasks that are necessary for building

diagram based CBA. The first task is to create a specification for the domain of

diagram notation to which the exercises belong. This specification must be described

6. Implementation 143

in a simple manner. It involves the design of each of the diagram-elements for the

intended notation, with their views, connectivity semantics and data model. Once this

specification is ready, the second task is to author the CBA exercise. This stage can be

broken down into three distinct tasks. The first task involves selecting appropriate

diagram-elements, tools, and application-based options for the student editor. The

second task involves devising the marking strategy for the student diagram by

creating a marking scheme that uses and configures appropriate marking tools. To

complete the exercise, the third task involves adding all the necessary CBA-related

information to the configuration of the exercise.

The completed CBA exercise can be deployed and set to accept submissions. The

running stage presumes that a CBA system has been deployed and is operational. It

involves the use of the CBA system by its users, the use of the student diagram editor

to complete the exercise, the execution of the marking mechanism and the creation of

appropriate marking results and feedback.

The administration stage encompasses all the tasks for course and exercise

management. This entails monitoring student and overall course results, editing

various course properties, registering and maintaining user lists and in general

providing functions similar to those provided by the Ceilidh system.

6.2.2 Usability and Usefulness

The target audience for CourseMaster are non-programming users. Therefore, it was

vital to address usability issues throughout CourseMaster’s implementation phase.

The design of the user views must adhere to well-defined HCI standards. The user

views must be coherent, concrete and easy to navigate. When a design choice is

presented that necessitates taking a choice between simplicity and functionality,

simplicity should always be prioritised, and a respective trade-off has to be made.

The implementation of DATsys and its authoring environments must also take into

consideration the fact that teachers, course developers and administrators do not

necessarily have programming experience and do not have ample time to delve into

the internals of the CBA system in order to create, amend, or extend CBA exercises.

6. Implementation 144

DATsys novelty is that it allows such constructions and modifications to take place by

non-programmer users through visual composition.

The implementation of the generic marking system takes into account the fact that

extensions are not only permitted, but are to be expected at any time in the foreseeable

future. The marking system has been designed in a highly reusable and extensible

manner. Extensibility and reusability are indispensable qualities to an open and

generic marking system which can support marking across a variety of domains and

disciplines.

The implementation of CourseMaster, the software base under the marking system

and DATsys, has to take into account the practices followed by the other two parts. As

an open CBA platform, CourseMaster has to be reliable, maintainable, portable,

extensible and secure.

6.2.3 Software Quality

The implementation must consider issues related to software quality. As discussed

briefly in section 1.1.2, software quality depends on additional to usability aspects

such as reliability, maintainability, portability and extensibility.

Reliability and robustness are very important to the generic marking system and to

CourseMaster in general, especially if the software is to be used in a controlled

environment for formal marking. Security is also paramount. Students that may

already have programming experience must not have the chance to compromise the

system’s integrity.

Maintainability is a key quality that touches upon all parts of the system. Thorough

documentation, code commenting and aggressive avoidance of states described in

literature as anti-patterns [BMM+98] are considered important factors of

maintainability. Future modifications and alterations must be predicted correctly in

order to make maintenance easier. The object-oriented model aids in improving

maintainability but only when correct choices have been made during the architectural

and design phase. Maintainability aims to contain change, therefore making software

more amenable to change in the future.

6. Implementation 145

Portability is necessary from a practical point of view. Academic institutions run a

variety of software in mixed-hardware environments. There is a need to support a

number of operating systems and hardware configurations. Academic institutions

cannot be expected to invest in a specific software/hardware platform in order to run

a CBA system. Re-writing the CBA system for specific software/hardware platforms

is not a viable option either, as this would require considerable more coding effort and

comes with the burden of supporting more versions of the same software.

Finally, the objective to turn the implementation to an infrastructure for future

research and evaluation requires a high degree of extensibility. Extensibility means

that extensions can be made with little difficulty and added to the implementation.

Modifications and amendments are to be expected in the lifecycle of software.

6.3 Implementation Overview

This section serves as an introduction on implementation related issues. Section 6.3.1

explains why Java was chosen as the implementation language while sections 6.3.2

and 6.3.3 describe a high level view of the parts and the relationships between

CourseMaster, the generic marking system and DATsys.

6.3.1 Choosing Java as the Implementation Language

The Java 2 language was chosen as the platform for the implementation of the design

for many reasons. Good guides for Java have been given for basic, intermediate and

advanced level by Eckel [Eb98], Gosling, Joy and Steele [GJS97], and Venners [Vb98].

According to its specification [GJS97], Java is a simple, object-oriented, distributed,

interpreted, robust, secure, architectural-neutral, portable, high performance,

multithreaded, and dynamic language. The implementation can take advantage of all

these qualities to produce a better deliverable.

Java is a suitable base to express the design ideas presented in chapter 5. Its support

for networking and distribution simplifies the implementation of CourseMaster’s

networking needs. Its interpreted nature gives the freedom to dynamically load and

execute parts of source code, a feature that is very useful in implementing the loading

6. Implementation 146

of the marking scheme. Its built-in support for robustness and security is essential for

all the deliverables, especially for the generic marking system.

Portability is a crucial reason for selecting Java. Java is supported on many platforms

and this alleviates portability concerns. CourseMaster’s implementation did come

across a number of aspects of Java that are not multi-platform. Operating system

specific code had to be inserted to resolve this problem.

As Java is an interpreted language, its performance suffers in contrast to compiled

programs. However, with the introduction of HotSpot compilation technologies

[Gd98], Java is fast approaching the performance levels exhibited by compiled

applications.

6.3.2 High Level View of the Implemented Parts

The implementation of the deliverable for this thesis consists of:

� Two base platforms: DATsys and CourseMaster

� Two authoring environments: Daidalos and Ariadne

� Various clients and seven servers within CourseMaster

Java 2 Platform

Operating System (Windows 98/NT/2000/XP, Solaris, Linux)

CourseMaster (CM)DATSys OO Framework

Daidalos Theseus CM Clients CM ServersAriadne

Figure 6.1: Software dependencies between parts of the implementation

Figure 6.1 illustrates a block-diagram of the relationship between these software parts.

Both DATsys and CourseMaster are written exclusively in Java and have been tested

6. Implementation 147

under various platforms running Windows, Solaris and Linux. Daidalos and Theseus

are applications based on DATsys. Ariadne is also based on DATsys, and

additionally, requires parts of CourseMaster. The CourseMaster clients and servers

are built on top of CourseMaster and are completely independent of DATsys.

6.3.3 High Level View of the Relationships between Parts

Figure 6.2 illustrates a simplified view of the data flow between the implemented

parts. Diagram notation specifications are authored by the course developer and are

expressed as domain tool libraries and application options. These are used in Ariadne

by the course teacher who develops the diagram-based CBA exercise. Using Ariadne,

the set of domain tool libraries and application options can be refined to address the

intent of specific exercises. In addition, Ariadne produces exercise setting-up and

marking files that are used by the generic marking mechanism that is contained within

CourseMaster’s marking server.

Figure 6.2: Relationship between DATsys parts

Theseus uses the tool library and the set of application options to allow the student to

draw the exercise solution diagram. Upon submission, the marking server uses the

marking files that have been created in Ariadne to mark and return the marking

results with feedback to the student.

6. Implementation 148

com.ltr.datsys com.ltr.cmcom.ltr.cm.marking

Java 2 Platform

Operating System

Authoring Environment:
Daidalos
Ariadne
Theseus

Generic Marking System:
marking tools and

configurations for various
domains

CourseMaster:
servers and clients to
support the running of

marking and
administration in a

controlled environment

Figure 6.3: The three top-level packages that contain all the implementation

Figure 6.3 illustrates the distribution of the implementation in packages. The

com.ltr.datsys package contains 12 packages for concepts within the DATsys

framework and three packages for Daidalos, Ariadne and Theseus. The package

com.ltr.cm.marking belongs to the CourseMaster package and contains two packages

for marking commands and marking tools. The com.ltr.cm package contains 26

packages for the main functions, servers, clients and common objects. Packaging

separates DATsys and CourseMaster so that each implementation can work

independently.

6.4 The Implementation of DATsys

Each package in DATsys contains classes related to the concept that the package

represents. DATsys contains 38 interfaces, 21 abstract classes and 271 concrete classes.

Seven main hierarchies and several single concepts are distributed in these packages.

In total, all the classes have approximately 2600 methods, and 1020 attributes. The

complete source code consists of approximately 37,000 lines of code, making the ratio

of code to method only 14.23 lines per method.

6. Implementation 149

com.ltr.datsys

figures
1 interface

3 abstract classes
31 classes

handles
0 interfaces

2 abstract classes
23 classes

tools
0 interfaces

2 abstract classes
9 classes

framework
19 interfaces

0 abstract classes
5 classes

gui
0 interfaces

0 abstract classes
23 classes

commands
2 interfaces

2 abstract classes
33 classes

internals
2 interfaces

6 abstract classes
22 classes

util
2 interfaces

0 abstract classes
14 classes

editor
0 interfaces

6 abstract classes
6 classes

theseus
0 interfaces

0 abstract classes
5 classes

daidalos
0 interfaces

0 abstract classes
5 classes

ariadne
0 interfaces

0 abstract classes
12 classes

<other packages>
12 interfaces

0 abstract classes
78 classes

Figure 6.4: The distribution of classes to packages in DATsys

Figure 6.4 shows the main packages of DATsys. The framework package is the

epicentre of DATsys as it contains the main interfaces that encapsulate the design of

the framework.

The figures package contains all the classes of the figure hierarchy. In addition, it

contains the classes for the connectivity and data model of diagram elements. The

figure classes use the functionality supported by Java’s 2D API [Sun01], [Hv99]. The

2D API contains numerous methods for drawing, colouring and painting of 2D objects

such as lines, rectangles, ellipses, and so on.

The tools package contains the tools hierarchy as illustrated in section 5.3.4. Nine

tools have been implemented for the most common functions of diagram editors.

The handles package contains all the implementation for the hierarchy of handles. 23

types of handles have been implemented. 16 are general handles and can be used in

all the figures, while the other 7 are made for specialised figures.

6. Implementation 150

The commands package contains classes that belong to the command hierarchy that is

described in section 5.3.5. 33 concrete commands have been implemented, both

internal and external. New commands can easily be created but require

programming. Template commands exist for the invocation of external tools and for

the construction of macro commands.

The gui package contains classes for specialised user interface components such as

toolbars, tool library editors, selection editors, text editors, and so on. These are used

within Daidalos, Ariadne and Theseus. The current implementation of the gui classes

uses the JFC API [Sun98].

The internals package contains classes of implementations for the tool library,

connectors, grids, canvases and the classes needed to add the feature of dynamic

evolution.

The editor package contains classes for making editors. It encapsulates the

abstractions needed for the editor’s models and views, and associates editors to option

makers. Three sub-packages of the editor package represent the two authoring

environments and the students’ diagram editor.

Finally, the util package contains helper classes and classes for general use. These are

classes that load and cache bitmap files and sounds, perform geometrical calculations,

load, save and convert diagram structures, read configurations to implement registries

and convert between colour models.

6.4.1 Daidalos

The implementation for Daidalos adds 15 classes to the DATsys framework. Most of

the additional classes define the implementations of its graphical user interface

components.

Figure 6.5 illustrates Daidalos’ input and output. When Daidalos starts, it loads a

configuration file that describes properties for execution paths, properties for the

graphical view, and other parameters. This configuration can be edited manually or

automatically by changing values within Daidalos. One of the parameters represents

the execution mode of Daidalos that can be set to “reset”, “normal” and “evolve”.

Depending on Daidalos’ execution mode, Daidalos presents different options to its

6. Implementation 151

users. While in “reset” mode, Daidalos puts default values in its existing

configurations and negates the effects of any extensions made. In “normal” mode,

Daidalos executes normally, and stores the changes made to make these available at

the next execution. In “evolve” mode, Daidalos presents the user with features to

develop predefined parts of itself. This experimental feature is described in more

detail in section 8.4.3.

Daidalos
Configuration Daidalos

Group of
tool libraries

(.tlib)

dlib dlibdlib

Figure 6.5: Daidalos and I/O

Users of Daidalos develop a tool library which is saved in a file that has a “.dlib”

extension. Tool libraries are designed to contain tools that have been customised to

suit specific graphical notations. As more than one notation often exists for a type of

diagram, tool libraries can be grouped. A group is meant to represent a diagrammatic

domain.

Daidalos’ interface presents the user with three main windows for:

� Tool library management

� Interactive diagram element creation and editing (on the canvas)

� Selection editing

Figure 6.6 illustrates a view of Daidalos and describes all its associated options. The

tool library window allows the organisation of tools into tool libraries and these into

groups of tool libraries. Supported functions include loading and saving libraries, and

6. Implementation 152

adding and removing tools. The "Add Tool" button creates a new tool by using the

figures that are currently selected. Depending on the selection, Daidalos interprets the

type and configuration of the tool to be created. Before adding a new tool, the

selection must contain a valid specification for a diagram element. The specification is

visual, and consists of the graphical appearance of the diagram element, its data model

and its configuration for connectivity to other elements.

1

2

3

4

5

6

Menu Options

7

8

9

10

11

12

Buttons: new, load, save, print, cut, copy, paste, undo, redo

Current group of tool libraries

Tool library buttons: new, load, save, delete

Choice for selecting a tool library that belongs to the group

Tool buttons for the current tool library

Buttons for tool properties, making, and removing a tool

Diagram canvas for creating diagram tools

Selection mode - sticky tool on/off

Prototype tools: select, text, connect, place connection pin

Scribble, line, rectangle, round rectangle, ellipsis, arc, polygon

Selection buttons: group, ungroup, send to front, send to back

13

14

15

16

17

18

Choice for type of font, size, bold, italic

19

20

21

22

Zoom-in, zoom-out

Selection editor

Name of the selected elements

Tab dialog for selection editor, properties, documentation

Foreground and bacground colour chooser

Shape surface: outline, colour, gradient, cyclic grafient, image

Shape outerline: width, dotted line parameters, joint connection

Colour palette, font, performance, execution, configuration

Foreground and bacground colour gradience chooser

1
2

3
4

5

6

7

8 9 10 11 12 13 14

15
16
17
18

19

20

21

22

Figure 6.6: Daidalos’ map of features

All three aspects of a diagram element are described interactively. The graphical view

is drawn using primitive figures. The data model is specified by adding typed data

fields. The connectivity is specified by either choosing perimeter-based connections or

6. Implementation 153

pin-based connections. The appearance and type of connection lines can be further

configured by selecting appropriate options.

The canvas for designing diagram elements allows the direct manipulation of figures.

The prototype tools toolbar contains the primitive tools with which diagram elements

are constructed. Primitive tools are used to specify diagram elements on the canvas.

The selection editor window allows editing attributes for the elements that are

currently selected. The available attributes include colours, transparency levels,

gradient colour fill types, textures, and so on. The attributes mirror the graphical

features found in Java’s 2D API. The selection editor also provides an option for

naming the selected element. This is imperative to ease the identification of elements

during marking. Daidalos supports single and multiple selection, multi-level undo

and grouping, zooming, Z-order layering, axis alignment, grids, and multiple fonts.

6.4.3 Ariadne

The implementation for Ariadne adds 7 classes to the DATsys framework. These

added classes cater for gui components that allow editing CourseMaster exercise

configuration files.

Group of Tool Libraries
(.tlib)

Ariadne Diagram-Based
CBA Exercise

Marking Files:
Marking Scheme

(mark.java)
Configurations for

Marking Tools
(various)

CourseMaster
Exercise Files

diagram-based
CBA Courses

Ariadne
Configuration

Theseus
Configuration Files

(.dlib) (.config)

Figure 6.7 Ariadne and I/O

Figure 6.7 illustrates Ariadne’s input and output. When Ariadne runs, it loads a

configuration that contains properties similar to those in Daidalos. However, in

contrast to Daidalos, Ariadne does not offer different types of execution modes.

6. Implementation 154

Ariadne loads a predetermined or default group of tool libraries and the existing

diagram-based CBA exercises. These exercises may have been already deployed in

CourseMaster, in which case Ariadne loads them from the course area. For

development and testing purposes, the exercises can also reside in a local directory.

Ariadne’s users are teachers who aim to create and administer diagram-based CBA.

To accomplish this, the output of Ariadne for a single exercise must consist of:

� An exercise specific tool library and application configuration file

� A marking scheme and configuration for the marking tools that are invoked

� Configuration for the CBA exercise

1

2

3

4

5

6 7

8

1

2

3

4

5

6Menu Options

7

8

9

Toolbar with same options as Daidalos

Tree for course repository

Exercise buttons: new, load, save, delete, load all, save all

A diagram-based CBA exercise

Diagram canvas for exercise skeleton and soluiton files

Selection property editor

Selection documentation editor

Text editor for exercise text-files

9

Figure 6.8: Ariadne’s map of features

6. Implementation 155

Figure 6.8 illustrates a view of Ariadne and describes all its associated options.

Ariadne contains most of the editing features of Daidalos. In addition, it contains a

repository management window to manage the files that belong to a diagram-based

CBA exercise.

For each of the configuration files, Ariadne opens an appropriate editor. For the

description of the marking scheme, Ariadne offers the generation of the source code

by using wizards, and a simple editor that provides compilation and testing features.

6.4.4 Theseus

Theseus is a generic template for diagram editors that accepts tool libraries and other

configuration, and becomes a specialised diagram editor. The implementation for

Theseus adds 3 classes to the DATsys framework. Those classes are useful in

configuring Theseus to an external tool library and an “application option

configuration” file.

exercise specific
tool library (.dlib)

Theseus exercise specific
diagram (.draw)

exercise specific
application configuration

(.config)

Theseus
configuration

Figure 6.9: Theseus and I/O

Figure 6.9 illustrates Theseus’ input and output. Upon execution, Theseus loads three

configuration files. Firstly, Theseus needs the exercise specific tool library. This

provides Theseus with the necessary tools that are placed on its toolbar. Secondly,

Theseus needs an application option configuration file that describes the available

options. Finally, Theseus needs a configuration for its general execution parameters,

styles, paths, and so on.

6. Implementation 156

Theseus’ users are the students that have to draw the exercise solution. Theseus is

customised to the requirements of the CBA exercise and it allows the creation of

diagrams in a simple and effective manner. Theseus’ output is a file with a “.draw”

extension. The information within this file represents all the elements of the diagram

and their attributes.

Upon completion, the students can press the “submit” button on their CourseMaster

clients. The clients send a submission object to the submission CourseMaster server,

which is delegated to the marking subsystem. This in turn executes the appropriate

diagrammatic marking tool that examines the student’s solution and returns marking

results and feedback.

1

2

3

4

5 6 7

8

1

2

3

4

5

6Menu Options

7

8

9

Diagram buttons: new, load, save, print

Available tools for the domain specific diagram

Statusbar for messages

Selection butons, cut, copy paste

Buttons: undo, redo, send to front, send to back

Buttons: selection sticky, select

Diagram canvas that allows the development of the exercise
solution. The title takes the name of the exercise
Connectivity handle

9

Figure 6.10: Theseus’ map of features

Figure 6.10 illustrates a view of Theseus for a sample exercise in logic design and

6. Implementation 157

describes all the associated options. Theseus contains only a subset of the editing

features of Daidalos.

6.5 The Implementation of the Generic Marking System

The generic marking system consists of 3 packages that are part of the CourseMaster

marking server. It contains 5 interfaces, 6 abstract classes and 36 classes.

com.ltr.cm.marking
3 interfaces

3 abstract classes
17 classes

tools
1 interface

2 abstract classes
11 classes

commands
1 interface

1 abstract class
8 classes

Figure 6.11: Package distribution of the generic marking mechanism

Figure 6.11 illustrates the main packages of the generic marking system.

The marking package contains the classes described in the design in section 5.4. It

contains the abstractions for the marking scheme, the hierarchy of the marking result,

the marking area and other helper classes.

The commands package contains a hierarchy of commands that adapt the interface of

the marking tools to CourseMaster. The marking command hierarchy mirrors the

hierarchy of the marking tools. The idea of adding a parallel hierarchy of adapting

commands to the marking tools decouples the marking tools from CourseMaster, so

that marking tools can be reusable.

The tools package contains the hierarchy of marking tools. Eight marking tools have

been implemented in total for programming and diagramming courses. A number of

6. Implementation 158

marking tools are planned for implementation in the future. Section 7.2.5 discusses

the design for more than 10 additional marking tools that will increase the number of

supported diagram domains.

6.5.1 Marking Scheme

As explained in section 5.4.2, the marking scheme describes the marking invocations

of a CBA exercise.

mark.class

package:
course1.unit1.ex1

package
com.ltr.com.marking

MarkingArea

abstract MarkingResult markExercise()
MarkingResult execute(MarkingCommand mc)

BaseMarkingScheme

mark.class

package:
course1.unit1.ex2

mark.class

package:
courseN.unitN.exN

...

MarkingResult markExercise()

Marking Action

BaseMarkingScheme instantiateMarkScheme()

Marking ClassLoader

Figure 6.12: Every exercise maintains a marking scheme in a unique package

Marking schemes are implemented as Java program files. All automatically assessable

exercises must contain a single source file named “mark.java”. These files contain

statements that instruct the marking subsystem on which actions to take in order to

mark the students’ solutions. As each exercise resides in its respective directory under

CourseMaster’s marking area, the individual marking scheme files must use Java’s

package statement to allow them to be separately loaded. Marking schemes are

6. Implementation 159

instantiated by a marking action and through a customised classloader. As Java’s

package statements have to be valid Java identifiers, packages (and thus, exercise

directories) are not allowed to begin with numbers.

Figure 6.12 illustrates the implementation view of the marking scheme as it relates to

its package. It also shows a simplified perspective of the instantiation of marking

schemes using classloaders. Figure 6.13 illustrates an example of a marking scheme

implemented for a diagram-based exercise. It shows in practice how the marking

scheme relates to CourseMaster, how the invocation of marking commands

commences and how marking results are created, composed and returned.

1

2

3

4

6

1

2

3

4

5

6

Every marking scheme belongs to the package of its exercise

7

Importing CourseMaster's marking classes is needed to access marking results, commands and the parent class

A marking scheme extends BaseMarkingScheme so that its markExercise() method can be called polymorphically

Implementation for the parent's abstract method that executes the marking of an exercise

Invocation of marking commands that invoke marking tools, passing the data that are needed to perform the marking

Any extensions and customisation can be easily expressed in Java at any point of the marking method

The marking result returns after having being created according to the execution of marking tools

package diagram.u1.lift;

import com.ltr.cm.marking.*;
import com.ltr.cm.marking.cmd.*;

public class mark extends BaseMarkingScheme {

public MarkingResult markExercise() {

 MarkingResult mr1 = execute(new DiagrammaticsCMD("mark.dg","lift.draw"));
 mr1.setWeight(35);

 MarkingResult mr2 = execute(new CircuitSimCMD("mark.ct","lift.draw"));
 mr2.setWeight(65);

 MarkingCompositeResult mcr = new MarkingCompositeResult("General Grade");
 mcr.addChild(mr1); mcr.addChild(mr2);

 return mcr;
}

5

7

Figure 6.13: A simple example of an implementation of a marking scheme

A limitation that is initially not obvious is that corrections to an exercise’s marking

scheme can’t be made at runtime. As Java normally uses a default classloader that

caches the loaded classes, it is impossible to update class-definitions at runtime. This

means that on any update of the marking scheme, the marking server needs to be

restarted, so that the new class definition can be loaded. This problem is rectified with

6. Implementation 160

the use of custom classloaders. Custom classloaders are also used in Daidalos’

support for runtime evolution for the same reason. Venners has given an in-depth

review for the inner-workings of Java classloaders in [Vb98].

6.5.2 Diagram-Based Marking Tools

Diagram-based marking tools have access to a diagram object that represents a

student’s solution. In addition to general querying services, the diagram object also

provides specific implementation features that are useful when translating the

diagram into other structures.

Program-Features
Marking Tool

Dynamic Test
Marking Tool

Typography
Marking Tool

Compilation
Marking Tool

Circuit Simulation
Marking Tool

Flowchart
Marking Tool

OO Design
Marking Tool

Checks the Typography of a program

Checks specific features of a program

Compiles a program and checks the output

Runs a program, provides test-data
and checks the output

Simulates a circuit, provides test-data,
and checks the output

Translates the Flowchart to a program
and reuses the Dynamic Marking Tool

Checks specific features
of the OOD Diagram Oracles for Features, Weights,

N-Level Feedback

Dynamic Tool Configuration

Test Data, Oracles for Circuit Output
N-Level Feedback

Test Data, Oracles for Program Output
N-Level Feedback

Oracles for CompilationOutput
N-Level Feedback

Oracles for Features, Weights
2-Level Feedback

Typographic Rules, Ranges,
Weights, N-Level Feedback

Marking Tools Marking Tool Configuration

Figure 6.14: Marking tools and their configuration

Figure 6.14 illustrates a range of programming and diagramming marking tools in

relationship to their configuration. The typography, program-features, compilation

and dynamic test tools all have the same configuration as in Ceilidh.

Three diagram-based marking tools have been implemented:

6. Implementation 161

� CircuitSimMarkingTool: marks logic design based exercises

� FlowchartMarkingTool: marks flowchart based exercises

� OOMarkingTool: marks object-oriented design based exercises

The circuit-simulator marking tool needs as configuration:

� Test data that will be fed to the inputs of the circuit for the simulation,

� Oracles to describe the correct output values or ranges of values per test-data,

� Feedback messages for all testing cases.

The flowchart-diagram marking tool, after translating the diagram to a program,

reuses the dynamic-test marking tool. Therefore, it needs the configuration of a

dynamic- test tool.

The object-oriented-design marking tool, investigates the student diagram for

particular features such as the use of specific relationships between predefined classes

and objects, the naming of classes and methods, and so on.

6.5.3 Marking Feedback

The configuration for the marking tools contains the marking feedback. All marking

tools return a tree of marking results where each node contains appropriate feedback.

The marking results may need to be viewed using different marking styles. The

rendering of the marks to the student GUI is the responsibility of the object

GradingStyle that is associated with the marking result returned by the submission

server in accordance with properties set within exercise properties. Students browse

the resulting tree of marks and identify problematic areas within their solution while

receiving comments on their submitted work.

Figure 6.15, illustrates the expandable tree of marking results and feedback as students

receive it after a submission. The root node of the tree contains the overall mark of the

student’s submission. Each node in the marking tree represents the respective

marking tool that has processed the student’s submission. Each sub-node contains

6. Implementation 162

tool-specific information on the student’s submission. Underneath the tree, the

feedback panel informs the students on their work in detail.

1

2

3

Root of the marking-result tree

Specific mark

Feedback panel

1

2

3

Figure 6.15: The tree components that students see for the marking results

The tree component follows a specific format. Each node in the tree contains three

fields:

� A bitmap icon

� The grade/mark awarded by the specific test

� The name and description of the node

The grading style that is typically used to illustrate the results to students converts the

marks to a customisable range of letters and bitmap icons. More grading styles are

provided in CourseMaster for some of the marking policies that exist across academic

institutions. The bitmap icon depends on the mark awarded by the specific test, and is

6. Implementation 163

customised per course by the course developer. CourseMaster uses a ball-shape

bitmap, the colour of which represents the mark, making the result aesthetically

pleasing to the student.

6.6 The Implementation of the CourseMaster CBA System

CourseMaster replaced Ceilidh’s 70 tools with an object-oriented architecture that

comprises of 29 interfaces, 28 abstract classes, and 279 classes contained in 23

packages. Six packages contain client-related classes, four contain common classes

between clients and servers and the remaining packages contain server related classes.

In total, all the classes have approximately 1300 attributes and 3350 methods. The

complete source code consists approximately 44,000 lines of code, making the ratio of

code to method 13.3 lines per method.

Figure 6.16 illustrates a view of all the packages within CourseMaster. The packages

archiving, login, audit, submit, and marking, contain classes for respective servers.

The Ceilidh server resides inside the server package. The course server is placed

inside the modules package.

The setup package contains classes for the packaging of the exercise files that are sent

to students upon exercise setup. Depending on the project type, the classes that gather

the exercise files can be configured to use pre-processors. Pre-processors can make

customisations to the exercise files before sending them to a student.

The utils package contains helper classes that deal with file manipulation, the parsing

of configuration files, and so on.

The debug package contains classes that help with debugging the CourseMaster

servers. A debug mode can be selected during the servers execution from the servers’

options. It presents helpful on-screen information for administrators and developers

on the internal and external state of the servers.

The common and common.project packages contain common classes that are needed

both by the CourseMaster servers and the clients. Specifically, the common.project

package contains a class hierarchy for types of student projects. A student project

6. Implementation 164

encapsulates a piece of coursework, contains the collection of student and exercise files

and accepts configurations that are appropriate to the type of coursework.

com.ltr.cm

archiving
1 interface

1 abstract class
9 classes

client
0 interfaces

0 abstract classes
7 classes

common
0 interfaces

2 abstract classes
5 classes

audit
2 interfaces

1 abstract class
9 classes

cmdline
1 interface

2 abstract classes
10 classes

debug
1 interface

0 abstract classes
2 classes

gui
0 interfaces

1 abstract class
27 classes

login
1 interface

1 abstract class
12 classes

modules
1 interface

1 abstract class
10 classes

setup
0 interfaces

1 abstract class
8 classes

marking
1 interface

1 abstract class
8 classes

server
14 interfaces

0 abstract classes
21 classes

submit
0 interfaces

2 abstract classes
6 classes

utils
0 interfaces

0 abstract classes
7 classes

develop
1 interface

1 abstract class
6 classes

run
0 interfaces

0 abstract classes
2 classes

user
0 interfaces

0 abstract classes
4 classes

project
3 interfaces

8 abstract classes
17 classes

Figure 6.16: CourseMaster view of packages

The client, client.develop, client.run and client.user packages are used

exclusively by the CourseMaster clients. They contain the necessary classes,

abstractions, logic, and helper methods to provide the functionality of the

CourseMaster clients. Specifically, the client.develop package deals with the

configuration and use of various development environments. The client.run package

allows for the running of student solutions (if they can be executed) by providing

wrappers for all CourseMaster supported operating systems. The client.user

6. Implementation 165

package contains user-related classes that are providing the client-side of student

authentication, password validation and client session information.

The gui, and cmdline packages are also used by the CourseMaster clients in their

entirety. Both contain classes for providing an interface to the users of CourseMaster.

6.6.1 CourseMaster Servers

An in-depth design phase and a comprehensive architecture simplified the

implementation of the CourseMaster servers. Because appropriate extension points

were identified during the initial design phase, new functionality can be suitably

inserted into the servers.

CourseMaster
Connection

Login
Server

Course
Server

Ceilidh
Server

Submission
Server

Marking
Server

Archiving
Server

Auditing
Server

CourseMaster
Connection

Ceilidh
Server

Login
Server

Submission
Server

Course
Server

Auditing
Server

Archiving
Server

Marking
Server

Process

RMI

Internal Reference

Thread

A. CourseMaster servers running within one process B. CourseMaster servers running in distributed fashion

Figure 6.17: Two scenarios for the deployment of CourseMaster servers

The servers use RMI for the distribution. For this reason, all the common objects must

support serialisation. It should be noted that RMI is currently not used for

communication between servers, as the physical segmentation of servers has not yet

been necessary. However, this can be achieved by providing a remote interface and

appropriate implementation for communicating using RMI with other servers. Figure

6. Implementation 166

6.17 illustrates two possible scenarios for the deployment of CourseMaster servers

with either one central process or one process for each server.

1

2

3

4

5

6

Menu options

7

8

9

10

11

Audit control buttons

Selection of level of logging to file - Four levels are available

Selection of level of logging to the screen buffer

Number of available lines for the screen buffer (10)

Textfield for finding a keyword

Buttons for finding next and previous occurences of a keyword

Buttons for printing and saving data to file

Options to filter the data of the screen buffer to a level of auditing detail

Tab dialog with options for each of the servers

The screen buffer rendered on a text component

1

2
3
4
5
6

10

7
8
9

11

Figure 6.18: A CourseMaster monitoring client for teachers

Figure 6.18 illustrates a monitoring client for administrators and teachers that displays

CourseMaster’s auditing information in real-time. In combination with CourseMaster

options for statistics and debugging the monitoring client is invaluable in

troubleshooting problems in complex networks.

The CourseMaster servers take advantage of Java’s exception handling mechanism to

improve their robustness. Typed exceptions represent all the possible exceptions and

errors that may be encountered during CourseMaster’s execution. When an error

condition occurs, the error or exception propagates through the chain of invocation in

order to reach the students’ client. Exception masking is used throughout the

propagation of exceptions between servers. For example, if an error occurs at the

marking stage, a MarkingException is spawned by the marking server and is

6. Implementation 167

propagated to the submission server as a SubmissionException. The exception finally

reaches the students’ client in a GUI dialog box.

6.6.2 CourseMaster Clients

The view of the client is configuration dependent. Three different views have been

written for the CourseMaster clients. CourseMaster’s gui package contains both an

AWT and a JFC based client. These are GUI clients and take advantage of Java’s

multiplatform capabilities. The JFC-based client can be configured to accept the look

and feel of a native Java, Windows or Unix/Motif program.

The cmdline package contains a client that is based only on text and is geared towards

graphical-less terminals such as DOS prompts and VT100 Unix terminals.

1

2

3

4

5

6Menu Options

7

8

9

System level buttons: exit, options

Tree for courses, units and exercises

An exercise

Statusbar for messages

Exercise level buttons: MOTD, Notes, Summary

Unit level buttons: Notes, Summary

Exercise level buttons: setup, develop, submit, question, view
testdata, view previous marks, execute solution
Text viewer

1

2

3

4

5

6 7 8

9

Figure 6.19: A CourseMaster student client

Figure 6.19 illustrates a view of the CourseMaster client that is based on JFC. The

6. Implementation 168

options that are represented are context dependent. According to the state of the

exercise, options progressively become available. For example, the option to submit

coursework is available only if a solution has been developed, the option to develop a

solution is available only after having set up the exercise files, and so on. The JFC

client can be configured as to its graphical components, paths and colours. The

window that presents the notes and exercise questions can render both text and simple

HTML documents.

Currently, more clients are being developed, one of them being a web-based client that

runs on Internet web browsers. This client uses a combination of static and

dynamically generated HTML pages, Javascript and JSP in order to reach the same

levels of functionality that the other three CourseMaster clients provide.

6.6.3 Integration with Diagram-Based CBA

The integration of DATsys with the generic marking system and CourseMaster was

carried out easily as most implementation issues had been anticipated at design.

DATsys

Project

Marking
Tool

Marking
Scheme

Marking
Result

Marking
Config.

Exercise
Config.

Diagram
Project

Figure

Connector

Ariadne

TheseusDaidalos

Diagram Marking Tool

Application Inheritance

InvokesSystem Class

Generic
Marking
System

CourseMaster

Figure 6.20: Dependencies between software components

6. Implementation 169

Figure 6.20 illustrates the dependencies between the parts of DATsys, the generic

marking mechanism and CourseMaster.

These dependencies reveal the points of integration. Daidalos is completely

independent of the generic marking mechanism and CourseMaster. Theseus also is

independent. Ariadne depends both upon parts of the generic marking mechanism

and CourseMaster. These dependencies are necessary as Ariadne needs to allow the

authoring of parts of the marking process and parts of CourseMaster’s exercises.

Only diagrammatic marking tools from the generic marking system depend on

DATsys classes. Specifically, diagrammatic marking tools need the Figure and

Connector hierarchy to be able to traverse and query information about the diagram

structure.

Only one point of CourseMaster knows about DATsys. CourseMaster diagram project

objects need to be able to invoke Theseus when an action to develop an exercise has

been requested by students.

6.7 Summary

This chapter presented an overview of the implementation of the system for the full

lifecycle support of a diagram-based CBA. The system consists of the DATsys

framework, the meta-diagramming editor Daidalos, the exercise authoring

environment Ariadne, the student diagram environment Theseus, the generic marking

mechanism and CourseMaster. The generic marking mechanism has been

implemented as part of CourseMaster. The implementation used the Java

programming language to adhere to the requirements and objectives that have been

set in chapter 4.

The next chapter shows how the implementation is put into action for authoring,

running, marking, administering and evaluating diagram-based CBA.

Chapter 7,

Use and Evaluation

Objectives

Examples of CBA exercises

An Initial Evaluation of
Diagram-Based CBA

Evaluation

Use and Evaluation

Feasibility
Usefulness

Logic Circuits
Flowcharts
OO Design
Other Diagrams

Feasibility
Usefulness

Evaluation of DATsys
Evaluation of the Generic
Marking System
Evaluation of CourseMaster

"Not everything that can be counted counts,

and not everything that counts can be counted"

Albert Einstein

7. Use and Evaluation 171

Introduction

This chapter argues that the development of an authoring environment for diagram-

based CBA is feasible and useful. Following the implementation details given in

chapter 6, this chapter illustrates the system’s use, summarises the provisions that

have been made for making customisations and extensions, evaluates the software

from the perspectives of feasibility, usefulness, and software quality, and discusses

initial results towards the evaluation of free response diagram-based CBA.

DATsys, the generic marking system and CourseMaster, can be used for a wide range

of diagram-based exercises. All together they offer a simple and pragmatic technique

to author, run, and manage diagram-based CBA. CourseMaster has been available

within academia since 1999, providing support for the marking of programming

coursework. The diagram authoring extension, entitled DATsys, was integrated into

CourseMaster in May 2000.

Three examples of diagram-based exercises have been authored and tested in a

controlled environment during the year 2000-2001 at the University of Nottingham.

Section 7.2 describes the lifecycle of these exercises and discusses the advantages and

limitations that have been detected. Sections 7.3 to 7.5 present an evaluation of

DATsys, Daidalos, Ariadne, Theseus, the generic marking system and CourseMaster.

Evaluation is considered from three perspectives, notably CBA, Diagramming and

Software Engineering.

Section 7.6 gives some initial answers to the problem of developing diagram-based

CBA, by presenting an evaluation of the usefulness of the authoring system to various

parties and to assessment in general. It argues that the automation of the assessment

of diagrams can be as effective as that of programs and discusses its practical and

pedagogic benefits.

7.1 Objectives

This chapter addresses two main objectives:

7. Use and Evaluation 172

� To evaluate the feasibility, usefulness and software quality of the authoring

environment and platform for the support of the full lifecycle of diagram-

based exercises

� To test diagram-based CBA in practice and draw initial conclusions about its

benefits for assessment and learning in general

Examples of authored diagram-based CBA address the feasibility issue and are

described in section 7.2. Usefulness and software quality aspects are addressed in

sections 7.2 to 7.6.

The objective for DATsys and its three editors has been to offer for educators from

non-programming backgrounds, customisation of the diagram editor to the

requirements of the exercise. Many Theseus editors have been designed towards this

goal. The aim for the generic marking system has been to cater for extensibility and to

accept marking criteria for new diagram-based domains. Criteria have been

implemented for circuits, flowcharts and object-oriented designs. The objective of

CourseMaster has been to support the full lifecycle of diagram-based CBA. All the

core functionality of Ceilidh has been implemented in CourseMaster, while software

quality has been significantly improved.

7.2 Examples of Diagram-Based CBA exercises

The authoring of a diagram-based CBA exercise involves the following stages:

� Using Daidalos to build a tool library for creating and connecting diagram

elements

� Using Ariadne to build a CBA exercise (by choosing a subset of Daidalos’ tools

for the student tool library, selecting application features, developing the

marking scheme, and configuring the marking tools and the CBA exercise)

The full lifecycle of CBA exercises involves the following additional stages:

� Testing and deploying the exercise through CourseMaster

� Running the exercise and marking student solutions

7. Use and Evaluation 173

� Administering the exercise and evaluating the results

In the academic year 2000-2001, exercises in three different domains were

automatically assessed using DATsys and CourseMaster at the University of

Nottingham. The exercises were part of a diagramming course that taught a range of

diagram-based concepts. The authored exercises domains were:

� Logic design

� Flowchart design

� Object-oriented design

The exercises were authored using Daidalos and Ariadne and were deployed via

CourseMaster servers. The class consisted of 167 first year undergraduate students

majoring in computer science.

A diagram-based CBA exerciseDaidalos Ariadne

Marking scheme (mark.java)

CourseMaster exercise configuration files:
- title
- question
- exercise properties
- setup properties
- client project properties
- solution
- skeleton solution
- scaling information

Marking
Command

Marking
Tool

Theseus configuration

File Options
Undo-Redo
Clipboard Options
Alignment Options
Grouping Options
Zooming Options
External Tool Options
...

Available OptionsTool Library

4. author diagram-based
CBA by defining:
- theseus configuration
- CM exercise files
- Marking files

Marking tool configuration

 1. create diagram
elements by defining :
- graphic view
- connectivity
- data-model
2. create tools and make a
tool library
3 create and make
application options

Marking SystemCourseMaster

Figure 7.1: Steps for authoring diagram-based CBA

Diagram-based CBA exercises are authored with ease. The task is lengthy, but

straightforward and the outcome benefits both students and educators alike. Figure

7.1 depicts the overall process. Daidalos is used to create tool libraries with tools for

7. Use and Evaluation 174

the creation and editing of diagram elements. The first step in the creation of a tool

library is to draw the diagram elements. The connectivity properties for every element

can then be entered. The next step is to create a data model for all the elements for

which it is required. Once a diagram element is complete, it can be placed into the tool

library.

Once a tool library has been created, Ariadne can be used to author CBA exercises in

the domain for which the tools have been created. Application options for Theseus

must be selected, and Ariadne is then used to develop the marking scheme and

configure the marking tools and the properties of the specific CBA exercise. Ariadne

invokes its own text editor in order for the user to enter the title and question of the

exercise. The editing of the exercise’s properties, the set up properties file and the

CourseMaster clients’ project properties come next. If automated marking is required,

additional exercise related files must be created (such as the marks scaling

configuration, and the configuration of the marking tools).

The exercise is then ready to be deployed and tested through CourseMaster. The

exercise author should test the exercise by using CourseMaster and Theseus. After

drawing the solution of the exercise, the exercise author must describe and test the

marks and feedback for variations of the solution. As soon as the exercise is complete,

it can be placed under the appropriate CourseMaster directory. The teacher can then

decide when to make the exercise available to the students.

The next sections describe example coursework in the three aforementioned domains

and highlight the variations between the numerous processes of supporting the

coursework’s full lifecycle.

7.2.2 Logic Design Coursework

7.2.2.1 Developing the Logic Design Exercises

Diagram-based CBA exercises in logic design were the first to be authored. Figure 7.2

depicts the entire process.

Daidalos is used to create the tool library that represents the logic gates; this task does

not require much effort. The view of the various gates and other components can be

made either by composing primitive shapes or by placing bitmap pictures of the

7. Use and Evaluation 175

various gates into a rectangle with a transparent perimeter. The connectivity

properties for each gate can then be set by placing pin figures on the appropriate

connection points. Pins need to be named and characterised as input or output. The

connection figure that connects the two pins of two gates can be a simple three-

segment poly-line (an elbow type of connection line). The interaction for connecting

two gates requires clicking with the mouse a connection handle within a pin-figure,

and dragging the connection line to another pin, thus creating a wire relationship. The

stage of configuring a data model for every diagram element can be omitted, as gates

do not have a data model. Once a gate’s design is complete, the tool that creates tools

is used to add a creation tool for the selected gate into the tool library. All gates can be

constructed in a similar manner.

An exercise in logic designDaidalos Ariadne

Marking scheme (mark.java):
invokes simulation and feature commands

CourseMaster exercise configuration files:
- title
- question
- exercise properties
- setup properties
- client project properties
- solution
- skeleton solution
- scaling information

Circuit Simulation Command

Circuit Simulation Tool

Theseus configuration

File Options
Undo-Redo
Clipboard Options
Alignment Options
Printing Option
Shortcuts
...

Available OptionsTool Library

4. author logic diagram
CBA by defining:
- theseus configuration
- CM exercise files
- Marking files

Circuit simulation tool configuration, test-data,
oracles for output values, feature tool oracles

 1. create logic gates
by defining :
- graphic view
- connectivity
2. create tools for gates,
and for conectivity
3 create simple application
options

Marking System

CourseMaster

Feature Command

Feature Tool

Figure 7.2: Steps for authoring CBA exercises in logic design

Once a tool library for gates is complete, Ariadne can be used to select the application

features that will configure Theseus. For example, as simple circuit design does not

require zooming, so this feature is disabled. However, multiple undo and redo is

useful, so this feature will be incorporated into Theseus. Ariadne is then used to

develop the marking scheme and configure the marking tools and the CBA exercise.

The CircuitSimMarkingTool is a marking tool for assessing simulated logic gates. This

7. Use and Evaluation 176

tool requires configuration, test-data and oracles for output values that the exercise

author has to describe by choosing to edit the appropriate file from the exercise file

repository.

Another marking tool that can be used in logic design CBA is the feature tool. This

tool can test the students’ ability to create a circuit with specific characteristics. For

example, the feature tool can be set to check for the minimum or maximum number of

gates that must be used. The feature tool requires another set of configurations and

oracle files. The title, exercise question and the exercise’s properties have to be given

next. Optional exercise-related files include the marks scaling configuration, the setup

properties file and the CourseMaster clients’ project properties.

After the authoring process using Ariadne, the exercise can be deployed and tested

through CourseMaster. Upon completion of the testing phase, the exercise can be

made available to the students.

7.2.2.2 Use and Evaluation of the Logic Design Exercises

Two logic design exercises have been set as formal coursework at the University of

Nottingham. The first exercise requires students to draw a simple circuit for an

elevator control board. The second exercise requires the students to design a circuit

for a switchboard that controls a nuclear facility.

A quick demonstration of Theseus was important to familiarise the students with the

environment. Students were already familiar with CourseMaster, as they had already

used it for assessment in a Java programming module during their previous semester.

The students that were taught the basics of logic diagrams had limited programming

experience and had to think in terms of simple Boolean formulas. The solution of the

first exercise required the use and connection of 3 gates (AND, OR and NOT), 3 input

components (ON/OFF buttons), and 1 output component (an alarm). The second

exercise’s solution contained 9 gates, 3 inputs and 3 outputs. It is worth noting that

the students were allowed to use more components to produce the same logic, and

would have got full marks for the dynamic tests during the simulation of their circuit

for doing so. However, during the features checking part of the marking process, the

7. Use and Evaluation 177

marking feedback would suggest to the students that their solution was not optimal.

A small percentage of their marks would also have to be deducted for the feature test.

The marking server ran on a Pentium III 650 with 256MB RAM. The marking server

was seen to mark up to 15 submissions concurrently. The administration of the

exercise did not differ from previous CourseMaster programming assignments. The

administrator was able to open and close the exercise on the appropriate dates, and

give extensions and additional submissions to students that had the appropriate

permission. These are standard features of the CourseMaster CBA system, available to

the administrators for all the courses and exercises.

The two logic circuit exercises proved to be successful. Once students understood the

question, they were able to identify the necessary components and draw the solution.

The vast majority of the students came up with the correct results. Some students

experiencing difficulties were helped by CourseMaster’s feedback and as a result were

able to draw the correct circuit. The two logic design exercises introduced the students

to Theseus. Most of the students were very happy with the system. They particularly

liked the uncluttered feel of Theseus and the speed with which the system responded

during the drawing of their solution and the marking of their work. The students also

mentioned that learning Theseus was easy and that the intuitiveness of the interaction

with the diagram induced a playful state of mind.

7.2.3 Flowcharts

7.2.3.1 Developing the Flowchart Exercise

Diagram-based CBA for exercises that use flowchart diagrams was the second type of

exercise that was created. Figure 7.3 depicts the authoring process.

The authoring of the tool library that represents the flowchart diagram symbols

requires additional editing to that of logic gates. The view of the flowchart diagram

elements can be made by composing shapes. The connectivity properties for each

element can be set by selecting a perimeter-type of connectivity. The connection figure

that connects two flowchart elements should be a simple line figure, decorated with an

arrowhead to denote the direction of the flow. The data model for each element is a

7. Use and Evaluation 178

text label that holds the statement within the flowchart symbol. Once the diagram

elements have been created, the tool library can be constructed.

For the next stage, Ariadne is used to configure Theseus and CourseMaster’s marking

system. Theseus must be configured to allow zooming as flowcharts can turn out to

be quite large in size. Other options may be enabled such as grouping and alignment,

font editing, and z-layer ordering. Appropriate marking tools can mark the student

flowchart as effectively as in the case of logic design. The flowchart tool converts the

diagram into BASIC code and reuses the dynamic marking tool to test the correctness

of the flowchart’s execution. The feature tool is also used to tests the students’ ability

to use the correct diagramming components. The feature tool also requires

configuration and oracles.

An exercise with flowxhartsDaidalos Ariadne

Marking scheme (mark.java):
invokes flowchart commands

CourseMaster exercise configuration files:
- title
- question
- exercise properties
- setup properties
- client project properties
- solution
- skeleton solution
- scaling information

Flowchart Marking Command

Flowchart Marking Tool

Theseus configuration

Available OptionsTool Library

5. author flowchart
CBA by defining:
- theseus configuration
- CM exercise files
- Marking files

Flowchart tool configuration, test-data, oracles
for output values,

 1. create flowchart symbols
by defining :
- graphic view
- data model
2. create tools for the
symbols
3. create connection types
and respective tools
4 add zooming options

Marking System

CourseMaster

Dynamic Command

Dynamic Tool

File Options
Undo-Redo
Clipboard Options
Alignment Options
Shortcuts
Zooming Options

Figure 7.3: Steps for authoring CBA exercises in flowchart design

The remaining configuration needed for CourseMaster exercises is similar to the

configuration in logic design exercises. The title, question, solution and exercise’s

properties along with exercise related files, such as the marks scaling configuration,

the setup properties file and the CourseMaster clients’ project properties must all be

entered. The exercise is then deployed and tested through CourseMaster. As with the

7. Use and Evaluation 179

logic circuit exercise, the exercise developer should test the flowchart exercise by using

CourseMaster and Theseus. After this stage, the exercise is ready to be run.

7.2.3.2 Use and Evaluation of the Flowchart Exercise

One exercise has been tested as formal coursework for flowcharts. The exercise

requires students to draw a flowchart for comparing three numbers. Although simple,

this example uses all the nodes of the flowchart diagram notation.

The students were taught the basics in flowchart diagrams. Being novice

programmers, they had to design a simple algorithm. The solution of the first exercise

required the students to:

� Draw a starting and ending flowchart node, three input statements, three

conditional statements and three printing statements

� Enter statements within each flowchart symbol to define its meaning. For this

reason the question description explained the simple syntax of these

statements

� Connect the flowchart symbols using single arrowed lines

As with the circuit design exercise, the marking server run on the same server, a

Pentium III 650 with 256MB of memory. Server statistics indicated a marking speed of

up to 15 submissions at any time. The administration of this exercise did not differ

from other CourseMaster exercises.

The flowchart exercise proved to be very popular. The majority of the students

entered their solution directly into Theseus. Some less astute students got the order of

input wrong and produced mixed results, but with the help of CourseMaster’s

feedback, they rectified their mistake to complete the exercise.

7.2.4 Object-Oriented Design

7.2.4.1 Developing the Object-Oriented Design Exercise

Diagram-based CBA for exercises in object-oriented design was the third type of

exercise that was created. Figure 7.4 depicts the authoring process.

7. Use and Evaluation 180

The authoring of the tool library that represents the symbols for object-oriented design

diagrams requires more complex techniques than those of logic circuits or flowcharts.

The view of the diagram elements for object-oriented design can be made either by

composing primitive shapes or by writing skeleton Java code and using Daidalos’

reverse engineering options. The latter is a feature of Daidalos that allows the user to

select a directory that contains Java classes and/or source code. Daidalos then parses

the classes in order to produce a UML diagram. The reverse engineering feature

speeds up the creation of suitable diagram elements.

An exercise for object-oriented designDaidalos Ariadne

Marking scheme (mark.java):

CourseMaster exercise configuration files:
- title
- question
- exercise properties
- setup properties
- client project properties
- solution
- skeleton solution
- scaling information

Theseus configuration

Available OptionsTool Library

5. author object-oriented
deign CBA by defining:
- theseus configuration
- CM exercise files
- Marking files

Oracles for feature tool

 1. create diagram symbols
for an object-oriented
design by defining :
- graphic view
- data model
2. create tools for the obect
oriented symbols
3. create tools for
connections for inheritance,
aggregation, composition
and association
4 add zooming options

Marking System

CourseMaster

File Options
Undo-Redo
Clipboard Options
Alignment Options
Shortcuts
Zooming Options

Feature Command

Feature Tool

Figure 7.4: Steps for authoring CBA exercise in object-oriented design

As in flowcharts, the connectivity properties for each object-oriented node can be set

by selecting a perimeter-type of connectivity. The connection figure that connects two

object-oriented design elements can be a simple line figure or an elbow poly-line,

decorated with a symbol to indicate the relationship type. Such symbols for typical

object-oriented notations can be represented with figures such as circles, diamonds,

and arrows. The data model for each element consists of a name and a list of attributes

and methods. Any convention for describing the attributes and methods can be used.

Upon completion of the tool library, Ariadne is used to configure Theseus,

CourseMaster’s generic marking system, and its exercise properties. Theseus is

7. Use and Evaluation 181

configured to allow zooming because even simple object design diagrams can be quite

large. Grouping and alignment options are also necessary and must be selected.

Object-oriented design diagram exercises rely heavily on CourseMaster’s feature tool.

The feature tool requires configuration and output oracles. It is used to validate the

relationships between diagram elements. The tool is also used to identify redundant

classes and/or interfaces, and to distinguish between the cardinality of the

diagramming components and their relationships. The remainder of the configuration

is similar to the other two types of diagram-based CBA.

After the configuration stage, the exercise is ready to be deployed and tested. As with

the other diagramming exercises, the exercise developer must test the exercise by

using CourseMaster and Theseus. Subsequently, the exercise can be opened.

7.2.4.2 Use and Evaluation of the Object-Oriented Design Exercise

Formal coursework was set to test the diagram-based assessment of object-oriented

designs. It required students to design a hotel management application according to a

well-defined specification of requirements. This exercise is harder to solve than the

ones described because of the expressiveness of the object-oriented diagram notation.

The students knew already about class diagrams and had to perform critical thinking

on which object-oriented elements to use and how to connect them. The solution of

the first exercise required the students to place 12 components and draw 17

relationships. Four additional components were available in the toolbar as decoys.

As with the rest of the diagramming exercises, the marking server ran on a Pentium III

650MHz server with 256MB RAM. The additional complexity of this exercise did not

additionally tax the server. A marking speed of up to 15 concurrent submissions was

again recorded. The administration of this exercise did not differ much from other

CourseMaster exercises.

The object-oriented design exercise has been popular due to its clear and well-focused

question. The complex nature of the solution drove a small number of students to

draw the solution on paper first and then to enter it into Theseus. This caused some

initial concern on the usability of Theseus. However, upon closer inspection, the root

of the problem seemed to stem from the fact that these students simply preferred to

7. Use and Evaluation 182

design on paper. Overall, all diagramming exercises were met with considerable

success.

7.2.5 Exercises in Other Diagram Notations

Many other types of exercises in various diagram-based domains can be created using

the combination of DATsys and CourseMaster.

1. Arrows and Cells

2. Data-Flow Diagram

3. Database Schema

4. ERD

5. Structure Diagram

6. Process Diagram

7.Network diagram

8. Pert Diagram

9. Mind Map

10. Medical Diagram

11. Petri Net

12. State Transition Diagram

13. Graph – Tree

14. Chemical Diagram

15. Concept Map

16. Analog Circuit Diagram

Figure 7.5: Various views of Theseus for sixteen notations

Figure 7.5 illustrates 16 types of possible coursework for which tool libraries have been

implemented. The time spent authoring for these 16 examples was minimal. It took

just three hours to make all the tool libraries using Daidalos. An additional three

hours were needed to draw the diagrams using Theseus.

This experience answers the question that was introduced in section 1.2.1. “To what

extent is it possible to generate domain and exercise dependent editors by means of

configuring and drawing as opposed to the more difficult task of programming?”.

7. Use and Evaluation 183

The simplicity of making the 16 additional types of diagram editors shows that a

multitude of editors can be authored with minimal effort. This has been made

possible by following the strategy of making the commonality across diagram editors

part of the framework and the variation to be specifiable within an authoring

environment. The limits of domain coverage using this technique are imposed by the

way in which the variation is described. However, by fully applying Daidalos’

prototypical dynamic software evolution technique, these limitations may be fully

resolved as modifications unpredictable to the original design could be made to the

structure and behaviour of the software, at runtime. Section 8.3.3 describes how this

can be accomplished in the future. It encompasses some challenging and unresolved

issues in the domain of software evolution and aspect-orientation.

Creating a tool library within Daidalos is sufficient only if the developer is satisfied

with the similar-looking types of Theseus editors. A course developer with some

programming experience could also extend DATsys with a new package of classes

representing a completely new editor. In this case, the concepts modelled within

DATsys could be directly reused.

Devising a marking strategy and appropriate marking tools is an essential step in

authoring the CBA exercise. In some cases, common diagrammatic marking tools can

be reused. In others, completely new tools and configurations are necessary.

Diagram-based marking tools could be developed to mark a selection of diagram

notations that have been illustrated in figure 7.5:

� Data-flow diagrams could be marked in a similar manner to flowcharts. A

data-flow marking tool could convert the diagram into an intermediate format

and evaluate the result using oracles. The feature tool can be also used to

examine concrete characteristics of the students’ solutions.

� Database scheme diagrams could be marked by using a suitable tool that

converts the diagram to a database table, runs SQL queries, and tests the

output data using oracles. Depending on the result of the queries, marks can

be awarded. The feature tool can also be used to address any shortcomings.

7. Use and Evaluation 184

� Network diagrams might be converted into formats understood by various

network simulator tools. Such tools can perform a variety of tasks including

load balancing distribution examination, data throughput analysis and

performance scaling investigation. The output of such a network simulator

tool could be read back by the marking system and marks could be awarded.

The Feature tool can further address any limitations of the simulator tool.

� Pert diagrams can be marked with the combined use of a pert simulation tool

and a feature tool. The simulation tool would calculate and evaluate time

dependencies and identify any discrepancies in the students’ solutions.

� Medical diagrams (and any other type of picture-based diagrams) can be

assessed by developing a marking tool of the graphical/hot spot category. The

developer would configure the tool with the areas of interest, along with their

name and coordinates. The tool could then examine the students’ solutions

and award marks accordingly.

� Analogue circuit diagrams could be marked with the use of an analogue

simulator tool. A converter would need to convert the diagram to a net-list in

a format that is understood by an external simulation tool such as Spice [Va94].

Spice could be used directly or through a Java wrapper such as JSpice

[SHG+98]. The simulator can then simulate the circuit and its output can be

read back by a feature marking tool and evaluated.

� Concept maps can be marked by latent semantic analysis tools similar to Lou’s

work on essay-based assessment [FL94]. A feature tool can then comment on

the presence or absence of certain types of concepts.

The ideas for the above diagram-based marking tools are further discussed as part of

future research.

7.2.6 Summary

This section has shown that the software does support the full lifecycle of diagram-

based CBA. Exercises for three domains have been authored, deployed, marked,

administered and evaluated with 167 students at the University of Nottingham. Many

more example exercises can be created. Daidalos has libraries for more than 50 types

7. Use and Evaluation 185

of diagrams. With the addition of appropriate marking tools diagram-based CBA can

be created for most types of diagram. Although developing new marking tools is a

development task that needs planning, reuse of existing marking tools with minimal

configuration modifications is possible.

7.3 Evaluation of DATsys

The main objective for designing and implementing DATsys has been to make the

creation of a new type of editor a simple task that does not require programming. This

objective has been more than successfully met as the creation of a new diagram editor

literally takes minutes and does not involve any kind of programming or complex

task.

The specific feasibility requirements that were introduced in section 4.3.1.1 gave three

directions for the evaluation of DATsys. These were:

� The extent of domain coverage for new diagram editors

� The easiness of the mapping between the representations of domain elements on

the diagram and of suitable structures that can be marked

� The easiness of authoring a new type of diagram-based CBA exercise

DATsys can be used to produce editors for a range of diagram notations that extends

from simple structured graphics to graph types of diagram. A limitation of this

research is that the architecture caters for connection-based diagrams. The mapping

between the representations of domain elements and of structures that can be marked

is anticipated only for diagrams that are similar to graphs. For other types of diagram

notations that are inherently based upon the metric space, such as mechanical design

and geometry, DATsys needs alterations.

The mapping between the representations of domain elements and of suitable

structures that can be marked within Daidalos can be made on a one to one basis by

uniquely naming every diagram element and tool. This mapping process is simplified

by always using the same standard format for exporting a diagram, independently of

7. Use and Evaluation 186

the diagram type. The student solution is loaded by the marking server as a diagram

object and can be processed in terms of its figures, their attributes and connectivity.

Additional marking tools can be provided with little effort. Such marking tools would

either query for marking criteria or convert the diagram elements to other structures

that can be marked by external tools. Developing marking tools is not difficult once

CourseMaster’s main marking classes are familiar. The most complex tool that has

been developed as part of this research consists of only 320 lines of Java source code of

intermediate difficulty. For some areas it will be harder to create the appropriate

marking tools than others.

Authoring a new type of diagram-based exercise as described in section 7.2 is

relatively simple. All the common objects are implemented and only definitions for

the variations between courses needs to be given. In this sense, the software

deliverables can be seen as an infrastructure for research and experimentation.

Theseus’ potential is limited due to its lack of interoperability with other diagram

editors. Ideally, DATsys would understand the format of standard diagram editors,

render the diagram and let the user convert it to its native format . Another limitation

is caused by the absence of functions to execute and simulate the diagram within the

student’s environment. This would have required a much more complex authoring

process in which the execution behaviour for every diagram element and relationship

would have to be defined within Daidalos.

7.4 Evaluation of the Generic Marking Mechanism

The generic marking system has been designed and implemented as an evolution of

Ceilidh’s marking mechanism. Section 4.3.1.2 identified the requirements for a new

marking mechanism that achieves more flexible and generic marking than Ceilidh’s.

This section discusses the manner in which these design goals have been reached.

For diagram-based CBA, the extensibility of the marking mechanism has been

demonstrated by configuring marking tools for three different domains. As section

7.2.5 has described, many more can be developed. Converting the diagram to some

other structure takes some programming effort. However, by making the diagram

7. Use and Evaluation 187

available to the marking tools in the Extensible Markup Language (XML) [Hs01] the

options for conversions become much wider.

Running the generic marking mechanism has been successful and CourseMaster’s

intended functionality has increased. The marking mechanism and CourseMaster

preceded DATsys by almost two years. As part of CourseMaster, the generic marking

mechanism has been more widely tested for assessing programming courses.

Some marking tools are generic and can be reused across domains. The feature tool,

for example, is used in object-oriented design coursework and as a complementary

tool to the simulation tool in logic design coursework. The feature tool is also widely

used on CourseMaster’s programming courses, Java, Java2 and C++. Once an exercise

has been authored, the process of authoring similar exercises requires considerably

less effort. The configuration files can just be copied and the required modifications

can be applied. This significantly decreases the development time.

The decision to design CourseMaster using an object-oriented architecture has greatly

increased its maintainability. The marking system benefits from CourseMaster’s

architecture and has evolved over the three years of its use to support more types of

projects. Exercises have been customised to a much greater extent than in Ceilidh.

Furthermore, Java’s platform independence helps maintainability because there are

very few platform specific segments of code to maintain.

The decision to implement the generic marking system in Java has increased its

performance and scalability. More than 1000 student programs per week are

automatically marked at the University of Nottingham alone. The generic marking

system has run reliably for over three years. The fact that Java transparently supports

Symmetric MultiProcessing (SMP) gives to the marking system a considerable

advantage when run on a platform with multiple CPUs. Moreover, by allowing the

allocation of servers to different machines, the marking subsystem can be placed on its

own machine, thus increasing performance and scalability even further.

The generic marking system was developed in Java and was expected to exhibit the

usual platform independent properties of the Java platform. However, this was not

the case. Implementing a cross-platform marking system required some sections of

7. Use and Evaluation 188

platform dependent code to be written. Extensive testing under heavy loads was

performed on Microsoft operating systems as well as Solaris and Linux.

Security has been an important design consideration. A major security concern arises

when assessing student executables. However, the risk is reduced when assessing

diagram-based coursework. Ceilidh’s supports only the SUID and GUID security that

is supported in Unix systems [GS96]. CourseMaster’s marking system enhances

security by running the student programs in a sandbox.

The flexibility of the generic marking system allows the exercise developer more

freedom in expressing the specifics of the marking process for each exercise.

CourseMaster’s generic marking system is more expressive than Ceilidh’s and

supports extensive exercise customisation via the use of marking programs written in

Java, additional exercise properties and improved feedback mechanisms. The generic

marking mechanism has been found invaluable by both developers and teachers in

improving Ceilidh’s existing exercises and fine-tuning the students’ learning

experience.

The extra configuration that is needed to create an exercise within CourseMaster could

mistakenly result in the assumption that the authoring process is harder under

CourseMaster than under Ceilidh. Certainly, the process of authoring an exercise is

more time consuming, but not particularly more complex. Furthermore, the

additional effort spent during exercise authoring benefits the students. A simple

exercise takes, on average, a few hours to create, a complex one takes up to a day. The

time spent includes writing the exercise’s question, its model solution, the related

marking files and testing the exercise. The idea of describing the marking scheme as a

program resulted in a flexible and extensible form of specification for marking criteria

that assess student coursework. The feedback is implemented in custom ranges for

each of the criteria described within the configurations of the marking tools.

The advantages of the designed generic marking mechanism over hotspot exercises

are considerable. Diagram marking tools have access to the structure of the diagram.

This is not possible on a graphical hot-spot CBA exercise. Ideally, in free response

assessment, as the solution space of an exercise has potentially an infinite number of

solutions, tests should attain “total coverage” of the solution. This needs careful

planning and analysis. The use of oracles for the configuration of the marking tools

7. Use and Evaluation 189

has been appropriate to the three domains described in section 7.1. It will also be

appropriate for the sixteen domains illustrated in figure 7.5.

The generic marking system has been a successful prototype mechanism that allows

experimentation and creation of novel, automatically assessable, and across domains

diagram-based CBA. Metrics research for the evaluation of diagrams can realistically

be tested in large classes of students.

7.5 Evaluation of CourseMaster

The problem with supporting the full lifecycle of diagram-based CBA exercises is

resolved by designing and implementing CourseMaster as an evolution of the Ceilidh

system. Section 4.3.1.2 identified the requirements for CourseMaster:

� To improve Ceilidhs’s performance, scalability, maintainability, platform

neutrality, expressiveness, robustness, security and usability

� To seamlessly integrate with DATsys and the generic marking mechanism

CourseMaster approached Ceilidh’s limitations by considering them as vital

requirements during the design and implementation stage.

A current limitation of CourseMaster is that a piece of coursework cannot contain

different exercise types. For example, CourseMaster cannot set coursework that

consists of MCQs, programs and diagrams. This requirement was not planned for

during the design phase. A number of enhancements must be made to the

architecture of CourseMaster to allow incorporating such feature.

7.5.1 Timeline Highlights

CourseMaster was implemented in 1998 and tested for the first time as a replacement

for Ceilidh in the academic year 1998-1999. The first courses that were authored

covered two Java programming modules containing 35 exercises. CourseMaster was

made available to other academic institutions in late 1999 and is currently in use in

more than 15 academic institutions, where it supports the automation of coursework

in classes that have as many as 1500 students. CourseMaster was employed at the

7. Use and Evaluation 190

University of Nottingham supporting 150 students during 1998-1999, 270 students

during 1999-2000, 291 students during 2000-2001 and 310 students during 2001-2002.

7.5.2. Available Courses

Two Java courses have initially been authored for CourseMaster. The University of

Nottingham has been teaching these two programming courses to their first year

undergraduate students since 1998. Furthermore, a C++ course has been recently

developed. Ceilidh’s extensive exercise base can be used as a source of exercise

material. It is relatively simple to convert Ceilidh’s C and C++ exercises to

CourseMaster following the appropriate guidelines. The web administration tool

assists developers and teachers with this task.

A “diagrammatics” module and a respective course for CourseMaster have been

created as part of this work in April 2000. The module taught the basics in theory and

practice of diagrammatic representation and explained some of the most common

diagram notations used in computer science. The three types of diagram-based CBA

presented throughout section 7.2 belonged to this module. All the exercises are

distributed with CourseMaster.

7.5.3 Academic Institutions and CourseMaster

Many universities and academic institutions around the globe have acquired

CourseMaster. Over 40 institutions have tried the trial version: The National

University of Singapore, Ngee Ann Polytechnic, Johensuu University, and King’s

College have been some of the earliest to evaluate CourseMaster. More than 15

institutions are actively using CourseMaster’s second version, released in July 2001.

The majority of test sites are old Ceilidh users that made the transition to

CourseMaster. Feedback from these universities indicate that they find CourseMaster

much more successful than Ceilidh in many respects. CourseMaster is easier to install,

successful with scaling and helpful for the students. Anderson from Singapore

University stated that “I … believe that overall the use of CourseMaster enhanced the

course considerably” [Ah00], and Plasman from Glamorgan University stated that

“We are very impressed by CourseMaster” [Pp00].

7. Use and Evaluation 191

7.5.4 User Evaluation

Feedback received from students in the form of questionnaires and from informal

discussions, indicates that students tend to like CourseMaster more as the course goes

on. They appreciate the immediate feedback and feel that having three to five

available submissions for an exercise helps in improving their skills. Less experienced

students tend to like the idea of automatic assessment because they feel they can take

their time in completing the coursework. Overall, student feedback has always been

positive with minor exceptions.

Teachers are also very pleased with the system. They appreciate the fact that they no

longer need to mark hundreds of exercise solutions. Because course administration

and monitoring are very effective, even less time is spent on these activities.

Administrators are satisfied with the system. CourseMaster is much easier to set-up

and run than Ceilidh. Furthermore, because CourseMaster comes with extensive Web

administration tools, administration requires less effort.

7.5.5 Improvements over Ceilidh

CourseMaster made improvements over Ceilidh on:

� Functionality: by adding diagram-based CBA and further features

� Software quality: by noticeably improving maintainability, extensibility,

performance, scalability, usability, and security

This section also discusses plagiarism detection, administration, user evaluation and

future enhancements.

7.5.5.1 Maintainability

Maintainability is an important quality for software, often overlooked in favour of

short-term objectives. This results in software being more expensive during the

maintenance stage.

CourseMaster has a considerably higher degree of maintainability than Ceilidh for

many reasons. Its object-oriented design exposes a structure that is amenable to

7. Use and Evaluation 192

change. CourseMaster can be updated through run-time and compile time

configurations, sub-classing and class and method substitutions. The basic building

blocks of maintainable code, encapsulation and modularisation, are inherent within

the design which makes use of key object-oriented principles. In addition, Java’s

platform independence ensures that platform specific segments of code are kept to

minimum. Finally, in contrast to Ceilidh, CourseMaster’s source code demonstrates

improved readability and comprehensive documentation.

CourseMaster supported many changes and extensions over the three years of its use.

Two major and six minor versions were released in this period and more are

scheduled for the future. Exercises in CourseMaster have been customised to a much

greater extent than in Ceilidh.

7.5.5.2 Extensibility

Extensibility has been one of the most important objectives from the early stages of

development. Facilitating experimentation and research for assessment has always

been one of Ceilidh’s most important strengths. Various types of courses have been

developed over the years, the highest proportion of which were authored by Ceilidh’s

extended community.

CourseMaster increases Ceilidh’s extensibility with three significant enhancements.

Firstly, it employs the idea of describing the exercise’s marking process in Java, which

subsequently allows for a great degree of customisation. This is not only because

Java’s control structures can be used to fine tune the marking of an exercise but also

because the marking scheme can access information directly from CourseMaster’s

internal state. The latter opens up many possibilities for future extensions. For

example, marking tools could be written to take advantage of information about the

student profile of the submitting student to personalise the exercises feedback.

Secondly, CourseMaster provides extensive facilities to inter-operate with external

programs. It also features a generic type of course, which can be parameterised to

create user-defined course types. Custom projects can be defined with little effort. In

this case, configuration for invoking an external environment for the students must be

given. Generic projects have been implemented for:

7. Use and Evaluation 193

� Essay-coursework, that invokes MS-Word on the client [Mic01]

� Object-oriented design-coursework, that invokes Rational Rose on the client

[Rat00]

� Generic diagram-based coursework, that invokes Visio on the client [En01]

Thirdly, CourseMaster incorporates DATsys, which allows the authoring of generic

diagram-based exercises. DATsys presents many opportunities for extension as

discussed in section 7.3.

Any platform that supports Java can be used to run and extend CourseMaster.

Thorough testing under real conditions has been performed on Microsoft platforms,

Solaris and Linux.

7.5.5.3 Performance and Scalability

The decision to re-implement Ceilidh in Java has been a vital element in increasing the

system’s performance and scalability. Using early versions of the Java language

resulted in unsatisfactory runtime performance. However, these performance issues

disappeared as improvements were made to both the Java platform and its supporting

tools, namely compilers and its Hot-Spot technology [Gd98].

CourseMaster outperforms Ceilidh for two reasons: Firstly, CourseMaster has

considerably reduced the number of spawned processes. Ceilidh’s tools layer consists

of externally invoked programs that require the operating system to spawn processes

to interact with the user at all levels, including navigating through Ceilidh’s menu

structure. CourseMaster represents Ceilidh’s tools as internal objects that run within a

single process. User requests are handled on a per-thread basis. Consequently, the

high cost associated with process-based context switching is avoided and

CourseMaster performs much better than Ceilidh.

Secondly, by offloading the user tasks to the client, CourseMaster has succeeded in

relieving the servers from the burden of executing student-spawned processes such as

compilations, simulations and visualisations. A typical programming exercise in

Ceilidh sees a student compiling their program many times before submitting. By

7. Use and Evaluation 194

moving those user tasks to the client, CourseMaster considerably decreases the

amount of resources it requires to support students completing exercises.

CourseMaster’s implementation has been further optimised using profiling and

optimisation tools. Even better performance can be achieved by upgrading the

hardware platform underneath the system, or by using two or more processors in SMP

mode. CourseMaster can take advantage of servers with multiple CPUs thus

significantly increasing its execution performance without the need of re-compilation

or re-configuration.

The future performance of a system can be directly linked to its potential for large-

scale use. CourseMaster scales better than Ceilidh because the system has been

designed aiming execution in a distributed manner. By designing CourseMaster as a

loosely coupled, location independent system of distributed objects, CourseMaster is

better positioned to spread its processing load across a number of physical machines.

CourseMaster has been used to assess more than 1000 student exercise solutions per

week at the University of Nottingham. Although the load has been considerably high

before deadlines, CourseMaster has had relatively few problems and has run reliably

for over three years. Reliability is also indicated by responses from other universities

that have using CourseMaster. Received feedback shows that the system is very

reliable at high loads. For example, the National University in Singapore (NUS) has

been running CourseMaster for over a year marking more than 1500 assignments per

week.

7.5.5.4 Usability

The choice of separating the system logic between clients and servers allows the

development of many different types of clients.

A number of CourseMaster clients have been developed. Prior to the first release at

the University of Nottingham, an initial text-based client was developed for testing

purposes. A GUI client that used Java’s AWT (Abstract Windowing Toolkit) was the

first client that students used at Nottingham in 1998. In 1999, a new client was

developed, using Java’s JFC windowing toolkit. The new client required more

7. Use and Evaluation 195

processing power than the one based on AWT but it is more intuitive and it has a

better look and feel. The options for the JFC client have been described in section 6.6.2.

In comparison to Ceilidh, CourseMaster presents a superior interface to the students.

The tree component represents the available courses, units and exercises and allows

the student to browse through the course’s material. The options are context

dependent and sensitive to the state of the exercise. For example, students that have

not compiled their programs cannot select the option to submit. Options appear as

menu items, toolbar buttons and shortcuts. Students can personalise their client view

in various functional and presentational ways. The area where the notes are presented

can render either text or HTML documents.

CourseMaster also improved Ceilidh’s usability in respect to its deployment and

configuration. CourseMaster’s installation process is much easier than in Ceilidh.

Ceilidh uses shell-scripts that require an in-depth knowledge of paths, environmental

variables and external tools. In contrast, CourseMaster employs a graphical

installation wizard that guides the user through the installation sequence. However,

the configuration of CourseMaster requires some basic networking knowledge, such

as configuring TCP/IP addresses and ports, and some minimum Java knowledge,

such as setting the CLASSPATH variable correctly.

7.5.5.5 Security

Systems that support automatic assessment for summative purposes have additional

security requirements.

One of the major security risks is posed when assessing programming executables. An

astute student could devise malicious code in order to gain unauthorised access and

cause damage. Both Ceilidh and CourseMaster feature a number of security

mechanisms in order to ensure safe and trouble-free execution.

Ceilidh’s security is based on the SUID and GUID security supported in Unix systems

[GS96]. CourseMaster security has been a primary design concern. For programming

courses, CourseMaster uses the SUID and GUID security mechanisms when running

under Unix. Alternatively, the “runas” command can be used when running under

Windows 2000. Students are allowed to use CourseMaster only if their username has

7. Use and Evaluation 196

been added to the login list. The administrator is responsible for maintaining user

lists. CourseMaster provides two forms of authentication. The default way is to store

the user’s password in the login file. An alternative way requires the setting up of a

POP3 server that will authenticate the users on behalf of CourseMaster.

The passwords that are transmitted between the clients and the servers may pass

through potentially insecure networks. CourseMaster uses the DES password

encryption algorithm to overcome this problem and to minimise risks of security

breaches through network packet interception.

Encryption between clients and servers ensures that information stays hidden from

unauthorised users. For each successful login, a unique session key is generated for

authorisation purposes. Each key is assigned to a CourseMaster client and is validated

on every transaction for the lifetime of that login. Session key identification improves

security in ensuring that users are who they claim they are.

The actions of the various subsystems can be logged at four levels of detail.

Submissions, marking, log-ins and user related information is archived by default.

Additionally, CourseMaster can log its internal operations for debugging purposes.

The level of detail for the auditing process can be configured at start-up or at runtime.

The logging trails created by the auditing subsystem can be monitored either by

examining the log files or online using CourseMaster’s remote server console tool.

CourseMaster’s auditing facilities allow for simultaneous screen, file and network

output of the system’s trails.

All of these mechanisms work in conjunction with any other restrictions and privileges

an administrator may assign to the students.

7.5.5.6 Plagiarism Detection

With the emergence of the Internet, academic institutions are increasingly concerned

with the submission of plagiarised material. Operating system based security

measures have to be taken into account in order to deter students from copying from

each other. However, there are no means of guaranteeing that students will not share

their work with others.

7. Use and Evaluation 197

A solution to this problem was first introduced in Ceilidh in the form of a plagiarism

detection tool. The tool compares all the student solutions with each other and reports

evidence of plagiarism based on the similarities of student work.

When used for programming projects, the tool can detect comment and variable

alterations as well as syntactical variations (e.g. the transformation of a “for” loop to a

“while” loop, or the modification of a “switch” statement to multiple “if-else”

statements). CourseMaster includes a re-implementation of this tool. The tool can be

accessed through CourseMaster’s web admin tools.

For diagram-based projects, a plagiarism tool can be written that detects copies of the

same diagram file, by checking the coordinates of the diagram elements and

relationships. However, much better detection of student plagiarism can be made by

using audit trails within the student environment Theseus.

7.5.5.7 Administration

The adding and removing of users, courses, units and exercises, the opening and

closing of exercises, and the monitoring of students are some of the most essential

functions needed for the administration of a CBA system. Both Ceilidh and

CourseMaster support these basic features for administering a course.

Ceilidh provides administrative tools in the form of shell scripts. CourseMaster has a

web administration facility that performs similarly to Ceilidh’s shell scripts. It uses a

combination of dynamically generated HTML pages and CGI scripts. The available

facilities include student statistics, changing of exercise properties and viewing

missing/submitted student coursework. Monitoring of the system can be performed

using either the web facilities or the remote server console client. The web facilities

help the administrator to add and delete users, view error logs, edit course documents,

create and install new courses units and exercises, gather exercise metrics and grant

extensions to students.

One new feature of the web facilities can suggest to the teacher a selection of exercises

to choose from based on a variety of selection criteria. Another new feature is a web-

based wizard that allows the exercise developer to create new programming exercises

for CourseMaster. The wizard guides the developer through the authoring process by

7. Use and Evaluation 198

presenting them with the sequence of steps that have to be completed. An additional

mechanism allows the exercise developer to create a new exercise by modifying an

existing one with similar features.

CourseMaster has a secure remote server console client. The client allows an

administrator to connect to the CourseMaster servers and perform tasks such as

monitoring and shutting down the system. The remote server console client can also

be used to dynamically shutdown, unlink, and reload selective CourseMaster

subsystems at runtime, should a reason to do so occur. This can be particularly useful

if the CourseMaster developers add a feature or fix a bug in a specific subsystem. The

CourseMaster servers don’t have to stop in order for the new Java class definitions to

be loaded.

System statistics and debugging facilities are available only on the administration

console tool described in section 6.6.1. The system statistics display, amongst other

information, the number of submissions processed, assessed and archived and the

number of users currently logged in. The administration console tool also allows the

reloading of the course directory structures, should a change occur. This is needed as

CourseMaster caches the directory structures in memory to increase performance.

Ceilidh archives only the most recent submission of a student. On contrast,

CourseMaster archives all students’ submissions. CourseMaster makes it possible to

revert to a previous submission if there is sufficient reason to do so, for example if

requested by a tutor. All submissions are date and time stamped. Student receipt files

are generated on every submission, and both binary and ASCII versions of those files

are kept. The binary versions are used internally in CourseMaster, while the ASCII

versions are used by the web tool. The choice of archiving all the information

concerning student submissions has been found to be imperative in cases of

disagreements and disputes with the students over their mark, time of submission,

feedback given, and so on.

7.5.5.8 User Evaluation

Over the years of running both Ceilidh and CourseMaster at the University of

Nottingham, questionnaires were given to the students. Discussions have also been

held with students at the end of each course. The results analysed so far indicate that

7. Use and Evaluation 199

students find both systems helping them enhance their learning experience.

CourseMaster questionnaire results reveal that all students would rather use

CourseMaster than Ceilidh, mostly for its usability, user-friendliness and improved

feedback.

The general impression given is that students find CourseMaster to be remarkably

supportive. Some students expressed their concern at having trouble obtaining a full

grade when trying to raise their total mark from mid nineties to high nineties.

Conversely, other students reported that they use CourseMaster to get a good mark

and then proceed to their next assignment. In general, students use CourseMaster in a

helpful and appropriate manner.

Questionnaires have also been given to administrative and support staff. The staff

firmly believes that CourseMaster is much easier to set-up and run than Ceilidh. They

also report that the administrative workload has decreased, even if the number of

students has more than quadrupled. The monitoring of student activities has become

easier with CourseMaster’s web facilities. Extensive use of links makes the

administrative tasks quicker to perform.

7.6 Evaluation of Diagram-Based CBA with CourseMaster

Free response diagram-based CBA is a feasible and useful technique to automatically

assess diagram-based exercises. The software deliverables described in this work

demonstrate the feasibility of supporting the full lifecycle of diagram-based CBA. The

evaluation illustrates the usefulness to those involved in assessment.

This work has taken a novel approach by integrating a custom built student diagram

editor as part of the authoring of diagram-based CBA. This was important to align the

student solution with the various marking tools.

Choosing to implement a generic marking mechanism that accepts pluggable marking

tools has been very important in being able to create new diagram-based CBA without

having to do major development.

The decision to redesign and reimplement Ceilidh as CourseMaster was fundamental

to the success of integrating DATsys with the generic marking system.

7. Use and Evaluation 200

The diagram domains presented in sections 7.2 and 7.2.5 have explicit structures that

permit the simple specification of marking criteria. Both programming and diagram-

based types of coursework are free response types that accept qualitative marking

criteria. This work argues that as long as the diagram to be marked has an explicit

structure, the effectiveness of its assessment can approach that of programming

courses.

7.6.1 Practical Benefits

Diagram-based CBA exhibits the same practical benefits as other types of CBA.

Firstly, diagram-based CBA saves time. With a large number of students, the total

time spent is much less than the time spent during manual marking. Secondly,

diagram-based CBA saves on teaching resources and can reinvested back into the

course. For example, lecturers have more time to research and concentrate on the

taught material and the management of their class. Thirdly, diagram-based CBA

scales well for large classroom sizes and can be used to assess exercises that are part of

a distant learning environment.

7.6.2 Pedagogic Benefits

Diagram-based CBA using DATsys and CourseMaster exhibits considerable

pedagogic benefits. It exhibits three important properties:

• Repeatable; when a student exercise is submitted to the marking system with

the same inputs, it will always receive the same mark

• Consistent; the state of the marking system is the same both before and after

marking a student’s exercise

• Reliable; when the student exercise is submitted it is guaranteed that a mark

will be produced for the student

Using CourseMaster and DATsys offers a fair opportunity for success. All students

have the same options on their client and go through the same notes material. There is

no discrimination between students for both the notes and the assessment. These

7. Use and Evaluation 201

issues need careful planning in the case of delivering personalised feedback and

assessment.

CourseMaster treats all students anonymously. This is important in ensuring that

exercise assessment cannot be influenced by the identity of the student submitting the

exercise. This promotes fairness within CourseMaster because customisation of the

exercise feedback is always based upon marking criteria.

CourseMaster supports the scheduled opening and closing of exercises. This can be

done either manually or by setting timers. Experience in large classes of students has

shown that there is always a need for submission extensions. For example,

CourseMaster supports the late submission of exercises. In addition, the frequency by

which exercises are open and closed lets the teachers dictate the pace of a course

within CourseMaster.

Once students become familiar completing exercises within CourseMaster, academic

institutions are no longer focusing upon course management and instead can be using

that time to improve the course. For the student, using CourseMaster means more

frequent and immediate feedback throughout the course.

CourseMaster makes assessment redeemable as it can be configured to allow many

opportunities for submission to the students. Attempting to protect students from

rushing into a second submission, CourseMaster also includes a parameter to set the

time for the gap between student submissions.

By integrating diagram-based coursework with free response assessment,

CourseMaster allows the description of marking criteria that have access to

information that could be conducive to the assessment of all of Bloom’s levels of

learning. For courses that involve design, this is an important challenge.

Assessing knowledge and understanding of a design area could be done with

appropriately designed MCQs. However, by allowing the student to design a

diagram as a solution, marking criteria can infer cognitive processes that indicate

learning on an analysis, synthesis and evaluation level.

7. Use and Evaluation 202

7.7 Summary

This chapter has described how the development of an authoring environment for

diagram-based CBA is a feasible and useful idea. It has presented the key issues

surrounding the use and evaluation of DATsys and CourseMaster, that together

support the full lifecycle of free response diagram-based CBA.

Diagram-based exercises have been authored, tested and evaluated for logic design,

flowcharts and object-oriented diagrams. Many more types of exercises can be

authored in a wide range of diagram domains. The authoring process is relatively

simple and rapid. Results from the exercises that have been selected for testing show

both practical and pedagogical advantages.

The requirements for the design and implementation of DATsys have been met. The

authoring of a student diagram editor became part of authoring the diagram-CBA

exercise by using Daidalos and Ariadne. The generic marking system has met its

requirements in replacing Ceilidh’s marking mechanism and in making improvements

in its expressiveness, platform independence, extensibility and usability.

CourseMaster has also been successfully integrated with DATsys and the generic

marking system, and replaced the Ceilidh system. CourseMaster improves Ceilidh’s

software qualities and adds a new type of course for diagrams.

Chapter 8,

Conclusions

The Diagram-Based CBA Problem

Meeting the Objectives

Contributions

Future Work

Epilogue

Conclusions

Student Diagram Editor
Marking of Diagrams
Integrating with CBA

CBA
Diagramming
Software Engineering

CBA
Diagramming
Software Engineering

"In theory, there is no difference between theory and practice.

But, in practice, there is"

Jan L.A. van de Snepscheut

8. Conclusions 204

Conclusions

Section 8.1 discusses the diagram-CBA problem and summarises how this work has

met its general and specific objectives under the requirements that have been

introduced in chapter 4. The contributions of this work to the fields of CBA and

diagramming follow in section 8.2. Section 8.3 discusses topics for future work and

indicates references for follow-up research. Finally, section 8.4 concludes this

dissertation with an epilogue on diagrams, software, and automatic assessment.

8.1 Meeting the Objectives

This section revisits the objectives set out in the fourth chapter and demonstrates that

the key objectives have been accomplished. These were to:

� Design a generic student diagram editor that can be easily specialised to the

exercise

� Design a generic marking mechanism that can be customised to mark a range

of diagrams

� Integrate the two designs in a CBA system that facilitates realistic

experimentation and evaluation of diagram-based CBA for summative

purposes

8.1.1 Customisable Student Diagram Editor

Incorporating the authoring of the student diagram editor as part of the authoring of

the CBA exercise is a necessary step towards the integration between the diagram

editor and the marking system. This decision greatly simplifies experimentation and

research into new types of diagram-based CBA. It also gives the advantage of

presenting the student with an environment built specifically for the exercise.

Students are not required to learn a potentially complex environment to create their

diagrams because Theseus can be authored to expose only the relevant features

needed to complete a diagram-based solution.

8. Conclusions 205

The design and implementation of DATsys, Daidalos, Ariadne and Theseus has been

successful. The potential domain coverage for new diagram editors is large. In the

course of this research, Theseus has been used to edit more than fifty types of diagram

notations. This research has demonstrated that the mapping between domain objects

and diagram elements is both simple and effective. It takes minutes, rather than days,

for a course developer to create diagram elements, connection types and supporting

editor tools. Theseus can incorporate the range of standard application options

typically found in modern diagram editors. All of Theseus’ interactive features are

founded on standard HCI techniques for direct manipulation. Its user interface

utilises standard GUI components that are natural and intuitive for students.

DATsys has been designed with software quality as a prime concern. It has

implemented the required functionality in a reusable and maintainable manner. This

is reflected in its high performing and platform neutral implementation. DATsys

provides a solid foundation for exploring possibilities for many types of assessment

and for novel ideas in learning technology.

The authoring of a new type of diagram-based CBA is vastly simplified once

appropriate marking tools have been created. Developing new marking tools requires

some programming effort and knowledge of DATsys, the marking classes and

CourseMaster. However, once a marking tool has been developed, it can be reused

with other exercises of the same type. Diagram-based tools can be developed with

minimal effort because they have direct access to a student’s diagram object with all of

its attributes and features.

8.1.2 The Generic Marking System and Marking of Diagrams

This research has argued that each domain has its own notions of quality. This fact

was acknowledged from the project’s initial stage and therefore this work opted for a

generic solution to which changes and additions can be made with ease.

Thus, the main requirement for the marking mechanism, as discussed in section 4.2.2,

has been to devise a prototypical mechanism for experimentation and the creation of

novel automatically assessable and multi-domain diagram CBA. In this aspect, the

design and implementation of the generic marking system has been successful.

8. Conclusions 206

Marking tools have been developed for three diagram-based domains and for

programming in Java and C++.

The idea of expressing the marking scheme in a program worked very well. Although

a marking scheme can be very descriptive, it does not require complex programming.

The extensibility, expressiveness and feedback quality of the marking mechanism has

increased considerably. In addition, by taking advantage of Java’s dynamic linking

and custom classloader features, it has been possible to edit and re-load marking

schemes at run-time.

Other highlights of the marking system include the unlimited level of grouping of

marking results, the use of styles for rendering the marks to students, the use of

oracles to define marking tool configurations and the technique for setting feedback to

user-defined ranges for the marking results.

From a software quality perspective, the generic marking system implements the

necessary functionality in an effective way. Its marking tools are reusable and

composable to facilitate building more complex marking tools. The design explicitly

promotes maintainability by separating marking commands from marking tools.

Marking tools are independent of the marking commands, while the latter play the

role of adapting their interfaces to the former. Marking tools are available to the

marking scheme only through marking commands. As section 7.5.5.3 has discussed,

the implementation of the generic marking system is significantly more efficient than

the marking mechanism used in Ceilidh. Performance has also been optimised with

the help of profilers. Further performance enhancements can be achieved by

spawning marking server processes to be hosted on multiple physical servers.

Security and robustness have been a fundamental requirement. Firstly, as the marking

system is implemented by CourseMaster, it incorporates the security features

discussed in section 7.4. Secondly, the marking server is completely hidden from the

students. It can only be accessed via submission servers and only after the successful

validation of the users’ sessions.

A limitation of the generic marking system is that the process of creating new marking

tools involves some programming. It might be possible to express marking tools using

8. Conclusions 207

diagrams built within DATsys. In this way, the authoring of new types of exercises

would be much easier. The potential of this idea should be investigated in the future.

8.1.3 Integration with CourseMaster

As discussed in section 4.1, the integration of DATsys and the generic marking system

into a CBA system that supports the running, marking and management of CBA

coursework has been fundamental to the pragmatic use of diagram-based assessment.

CourseMaster’s design aimed to facilitate this integration while mirroring Ceilidh’s

functional specification and improving its software quality.

The major improvements of CourseMaster over Ceilidh are:

� Object-oriented design and software patterns have been employed and have

successfully aided in improving Ceilidh’s maintainability.

� CourseMaster configurations are wider and more expressive.

� Performance has improved considerably.

� Scalability has increased tenfold. As a result, even when run as a single

process, CourseMaster has been able to mark up to 1500 submissions on a

weekly basis. With server clustering, scalability can increase even further.

� CourseMaster runs on many platforms. It has been tested in various

configurations, types and versions of operating systems.

� Security and robustness have been addressed as part of the design, and

improvements have been made to many parts of the assessment process.

CourseMaster has succeeded in replacing the Ceilidh system. Currently it is being

used both at the University of Nottingham and in many of the universities that were

using Ceilidh in the past. No testing sites have yet developed diagram-based CBA.

However, from direct feedback, it is predicted that with more examples of marking

tools and test exercises, diagram-based CBA will be a viable exercise type with UK

universities that currently use CourseMaster.

8. Conclusions 208

8.2 Contributions

Although the main contributions of this work are in the area of CBA, considerable

advances can be also demonstrated in the area of diagramming. Experience in these

fields has been gained through the design, implementation and evaluation of DATsys,

the generic marking system and CourseMaster. The following sections highlight the

key contributions and a reflection on the lessons that were learnt as part of this

research.

8.2.1 CBA

The first contribution to CBA is simply the development and running of a new type of

CBA. Free response diagram-based CBA is a novel type of CBA that has not been

attempted prior to this work. However, the most important contribution to CBA is

that the software deliverables can be used as foundations for new research and

experimentation with diagram-based CBA. In effect, CourseMaster can be used for

the full lifecycle support of any type of fixed or free form CBA because it supports all

the processes that are generally common in assessment.

Prototypical coursework in logic design, flowchart logic and object-oriented design

indicates that the assessment of diagram-based CBA can be as effective as that in

programming CBA. Tool libraries for more than fifty diagram notations have been

authored and they are distributed together with CourseMaster and DATsys.

Associated marking tools can be developed in the future.

CourseMaster contributes and impacts directly upon the CBA community. More than

15 academic institutions have successfully deployed CourseMaster and experiment

with new programming exercises. Its use benefits students, teachers, coursework

developers and researchers.

As classes of students get larger, so does the necessity to employ automatic assessment

tools. DATsys and CourseMaster play an important role in this transition to automatic

assessment, thereby underlying the key contribution to the field of CBA.

8. Conclusions 209

8.2.2 Diagramming

DATsys contributes to the area of diagramming by suggesting a process of authoring

diagram editors that is simple and effective. As the design and implementation of

diagram editors in general is a complex task, DATsys benefits researchers with little or

no programming experience that want to simply, effectively, and rapidly create a

diagram editor.

DATsys has being used in a number of projects for its diagram editing features.

Ainsley used Daidalos to create a tool to reverse engineer object-oriented

implementations [Ac00]. Students at the University of Nottingham have used

Daidalos to create graph-tree diagrams and save these in various formats. Daidalos

can also be used to build editors that support the editing of visual languages.

Customised visual languages can be conveniently used to configure data structures or

to describe complete programs.

DATsys is also useful for typesetting reasons. Certain Daidalos features such as the

precise rotation of dotted lines, the mixing of transparency to bitmap textures, the

configuration of connectivity and many others are not supported in existing diagram

editors. Many of the diagrams of this thesis have been created in editors that have

been authored within Daidalos.

As the base of computer users without programming expertise increases, so does the

need to describe information in diagrammatic forms. DATsys approaches diagram

editor creation in a novel way and allows the authoring of diagram editors by using

interactive diagrammatic and graphical tools.

8.3 Future Work

Amongst the main contributions of this work has been the creation of a solid

foundation for future extensions. The possible directions that can be researched to

continue this work are numerous and span various subjects. This section highlights

the most interesting ones from the perspectives of CBA, diagramming and software

engineering.

8. Conclusions 210

8.3.1 CBA

Several final year and masters dissertations have been implemented for adding new

features both in CourseMaster and DATsys [Hl98], [Hj98], [Ac00], [Mj00]. Interesting

topics for student projects include the development of courses, new features for

various user views, marking tools, and exercises. Currently, the support of

dissertations related to psychology and education is being planned.

An interesting idea is to allow the mixing of assessment types to a composite CBA

exercise. CourseMaster already supports the assessment of programming and

diagram-based CBA. An exercise could use a combination of assessment techniques,

by adding support for multiple-choice questions and essays. This idea necessitates

revisiting the architecture of CourseMaster and making changes to all the objects that

are using the project hierarchies.

The Learning Technology Research group at the University of Nottingham intends to

make CourseMaster a foundation for a fully integrated teaching environment that will

support:

� Intelligent monitoring of student progress and automatic student guidance

using AI agents

� An intelligent tutoring system for automatic course delivery

For the first area, AI agents will be investigated as to whether they can be used to

personalise student feedback and with the administrative tasks. Agents can take

advantage of numerous types of data that have been collected and are stored within

CourseMaster’s archiving server.

For the second research area, links have been made with the REDEEM [AWW01] and

Whurle [BMS+01] projects, and related technologies are under investigation.

Currently a design phase is under progress that aims to integrate CourseMaster with

UPortal [Up02].

Other active ideas for research include the marking of GUIs and networking

programs.

8. Conclusions 211

8.3.2 Diagramming

The most prioritised extension for the diagramming part of this work is to incorporate

conversion mechanisms between the diagram, the XML and the Scalable Vector

Graphics (SVG) [Fj99] format types. This is necessary in order to allow the interfacing

of DATsys to an increasing number of diagram editors that support the two formats.

Other extensions include the addition of more tool libraries, commands, primitive

figures, handles and GUI components.

Although some simplified layout algorithms have been implemented, new layout

managers for the diagram elements can be very useful for non-CBA related uses.

8.3.3 Software Engineering

Interesting future work on the implementation of the software deliverables is

presented by further exploring of the idea of dynamic evolution in combination with

aspect-orientation.

The idea of dynamic evolution involves making software aware of its source and of its

compilation environment in order to provide features to users such as direct or

indirect editing of the source code and re-linking of the new version at runtime.

Taking advantage of this idea means that software effectively includes the

development environment of itself, but in a restricted manner. This concept has been

tested within Daidalos for classes representing commands, handles, connections and

grid types of the diagram canvas. This environment is available when Daidalos is

running in the “evolve” execution mode and allows direct editing of the source only

on particular hotspots of the framework.

The benefits of employing this feature are substantial. Users can evolve the system at

runtime in ways unanticipated prior to its design. The need to go through the steps of

development to perform a modification disappears. These steps typically include

loading the developing environment and the project for the software, locating the

segment of code that needs updating, making the change, re-compiling the project,

putting together a new version and ultimately re-installing and redeploying the

8. Conclusions 212

software. Most importantly, with an appropriate mapping between the source code

and diagrams, the evolution of the software can be given visually by users.

Facilities for user-oriented dynamic evolution of hotspots within DATsys can be

usefully developed for more than 30 hotspots. This includes single classes

representing new subtypes for all the major hierarchies. The set of hotspots should

include classes for describing new primitive and composite figures, tools, handles,

connectors, connection figures, GUI components and application options.

The issue of ensuring consistency between the old and newly evolved parts is an area

that requires additional research. One way to achieve this would be to investigate the

use of XML parsers and constraints [Cc01]. Subsequently, the software could also

include management of the history of its evolution and its functions in order to export

the changes and amend them into other installation bases. It is worth investigating if

the process of installation of software can be discarded and replaced with software

cloning that keeps inheritance relationships with its parent software.

The changes that can be made following this model can only be applied due to explicit

hotspots of the architecture expressed as methods. It is interesting to explore the

potential of allowing updates to the structure of the framework at runtime. In that

case, DATsys could evolve further than the limits imposed by the constraints of the

predetermined hotspots.

The second area for future work in DATsys, the generic marking system and in

CourseMaster is the investigation of the benefits of applying aspect-orientation to the

current architectures. Aspect-orientation helps improving the modularisation of a

system by encapsulating cross cutting concerns such as exception handling,

debugging, auditing, and so on. The implementation of such concerns is usually

spread through the classes and objects of a system. This makes code harder to

understand and less maintainable/evolvable. Aspects can introduce fields and

methods to any class and they can be notified before and after the invocation of

methods.

Aspects use designators to attach code. Designators are described using regular

expressions. Therefore, obtaining all the methods of a set of classes and introducing

code that prints their name as they are invoked, is a simple task. A simple tracer

8. Conclusions 213

aspect has been added to DATsys for debugging purposes. Aspects can be developed

and added selectively to the system at compile time. A theoretical view of aspect-

oriented programming (AOP) has been given by Kiczales et al in [KLM+97], and a

comprehensive practical guide is described in [KH01].

Encapsulating concerns that crosscut class hierarchies within DATsys and

CourseMaster could increase both their modularity and maintainability. In addition,

an interesting idea is to model and implement extension points into aspects and

attempt to dynamically load these at runtime. A large amount of changes can be made

to both the structure and behaviour of the running code by dynamically updating

aspects at runtime. This may lead to considerable improvements in extensibility.

8.4 Epilogue

This research investigated the feasibility and usefulness of the idea of designing an

authoring environment for developing diagram-based CBA. Free response diagram-

based CBA has not been reported prior to this work. This can be largely attributed to

the difficulties involved in the customisation of the student diagram editor to the

specifics of the exercise, the inflexibility of existing marking mechanisms to

accommodate new criteria and the lack of support for the full lifecycle of CBA

exercises.

An innovative facility has being designed and implemented to allow experimentation,

research and development of diagram-based CBA coursework for summative

assessment in a controlled environment. Two complete systems, DATsys and

CourseMaster, are the deliverables of this research that together make the support for

the full lifecycle of diagram-based CBA coursework both viable and realistic. The

running of free response diagram-based CBA is a solid advancement in the CBA field.

DATsys solves the problem of customising the diagram-editor to the specifics of the

exercise. The generic marking system solves part of the problem of marking diagram-

based coursework. It abstracts the common parts of the assessment mechanism and

allows variation to be expressed using marking schemes and marking tools. The

generic marking system is a part of CourseMaster. CourseMaster solves the problem

of supporting the full lifecycle of CBA while integrating DATsys and the generic

8. Conclusions 214

marking mechanism. CourseMaster has been successfully used for three years in

academic institutions by educators for assessing large classes of students.

The problems of this research were solved by applying current software engineering

principles. DATsys is an object-oriented framework designed to allow extensions

through visual specification. The generic marking system is a set of cooperating

classes that allows the description of marking schemes and pluggable marking tools.

Three marking tools have been implemented in this work as examples. Many more

can be implemented and appended to the marking system with relatively little effort.

Ceilidh and its successor have proven to be invaluable to the University of

Nottingham and to other academic institutions worldwide. CourseMaster

demonstrates considerable improvements over Ceilidh. Its architecture and

implementation satisfy the objectives of maintaining Ceilidh’s core functionality while

increasing performance, scalability, maintainability, extensibility and usability. The

modifications and amendments made on the assessment and administration processes

have also been successful, as they have improved the expressiveness of the marking

process and eased the management of courses, thus helping academic institutions in

their transition to automatic assessment.

Bibliography

AB99 Arnow D., Barshay O., On-line programming examinations using Web
to teach, Proceedings of the 4th annual SIGCSE/SIGCUE on Innovation
and technology in computer science education, Krakow, Poland, June 27
- 30, 1999, Pages 21–24

Ac00 Ainsley C., Java Reverse Engineering Application, B.Sc. Dissertation,
Computer Science Department, The University of Nottingham, 2000

Ac77 Alexander C., A Pattern Language, Oxford University Press, New York,
1977

Ac96 Alexander C., OOPSLA'96 keynote speech, Conference video, 1996,
Available from www.murl.microsoft.com

ACM00 ACM Statement, A Summary of the ACM Position on
Software Engineering as a Licensed Engineering Profession, Available
from www.acm.org/serving/se_policy/, July 2000

Ad96 Anthony D., Patterns for Classroom Education, In Vlissides J., Kerth N.,
Coplien J., (editors), Pattern Languages of Program Design, Volume 2,
Addison-Wesley, 1996, Reading, Massachusetts, US, Pages 391-406

Ah00 Anderson H., private email sent to LTR, march 2000

AHM99 Alexander W., Higgison C., Mogey N., Videoconferencing for Teaching
and Learning: Case Studies, Institute for Computer Based Learning,
Heriot-Watt University, Edinburgh, UK, 1999

AIS79 Alexander C., The Timeless Way of Building, Oxford University Press,
New York, 1979

ANSI00 American National Standards Institute (ANSI), Available from
www.ansi.org, 2000

AP89 Ackermann E., Pope W., Computer aided program design experiments:
diagrammatic versus textual material, Proceedings of the 20th SIGCSE
technical symposium on computer science education, Louisville, USA,
February 23 - 24, 1989, Pages 117–121

Ap93 Ackermann P., Combining 2D User Interface Components and
Interactive 3D Graphics in ET++, Conference Proceedings, Technology
of Object-Oriented Languages and Systems (TOOLS 93), Santa Barbara,
USA, August, 1993

Ap96 Ackermann P., Developing Object-Oriented Multimedia Software -
Based on the MET++ Application Framework, dpunkt Verlag,
Heidelberg, 1996

http://www.murl.microsoft.com/
http://www.ansi.org/

Bibliography 216

App89 Apple Computer, MacAppII Programmer's Guide, Apple Computer
Inc., Cupertino, CA, 1989

Ass94 Assymetrix Inc, ToolBook User's Manual, Assymetrix Incorporated,
1994

Aut00 Autodesk Inc., AutoSketch version 7.0, 2000, Available from
www.autodesk.com

AWW01 Ainsworth, S., Williams, B., Wood, D., Using the REDEEM ITS
authoring environment in naval training, IEEE International Conference
on Advanced Learning Technologies, 2001

Ba79 Borning, A., Thinglab — A Constraint-Oriented Simulation Laboratory,
Ph.D. thesis, March, 1979

Ba98 Blackwell A., Metaphor in Diagrams, PhD thesis, Cambridge
University, 1998

Bb86 Boehm B., A Spiral Model of Software Development and Enhancement,
ACM SIGSOFT Software Engineering Notes, August, 1986

BBC99 Bransford J., Brown A., Cocking R., How people learn: Brain, Mind,
Experience and School, Committee on Developments in the Science of
Learning, National Research Council, US National Academy of
Sciences, 1999

BBF+93 Benford S., Burke E., Foxley E., Gutteridge N. and Zin A. M.,
Experiences with the Ceilidh System, Proceedings of the 1st
International Conference on Computer Based Learning in Science
(CBLIS’93), Vienna, Austria, 1993

BBF+94 Benford S., Burke E., Foxley E., Gutteridge N. and Zin A. M., The
Design Document for Ceilidh version 2, LTR Report, Computer Science
Department, The University of Nottingham, 1994

BBF+95 Benford S., Burke E., Foxley E., Higgins C., The Ceilidh System for the
Automatic Grading of Students on Programming Courses, ACM Press,
Proceedings of the 33rd Annual ACM Southeast Conference, Clemson,
South Carolina, March, 1995

BBF+96 Benford S., Burke E., Foxley E., Gutteridge N., Zin A. M., Course
Developer’s Guide to Ceilidh’s Xwindow interface, LTR Report,
Computer Science Department, The University of Nottingham, UK,
1996

BBF92 Benford S., Burke E., Foxley E., Courseware to support the teaching of
Programming, Proceedings of the Conference on Developments in the
Teaching of Computer Science, University of Kent, 6th-8th April 1992,
pages 158-166

http://www.autodesk.com/

Bibliography 217

BBF96 Benford S., Burke E., Foxley E., Developer’s Guide to Ceilidh, LTR
Report, Computer Science Department, The University of Nottingham,
UK, 1996

BBG+93 Benford S., Burke E., Gutteridge N., Foxley E., Zin A. M., Experience
using the Ceilidh System, Proceedings of the All Ireland Conference on
Delivering the Computer Curriculum, Dublin, September 1993

BC87 Beck K., Cunningham W., Using Pattern Languages for Object-Oriented
Programs, OOPSLA-87 workshop on the Specification and Design for
Object-Oriented Programming, Technical Report CR-87-43, September
17, 1987

BCG97 Brna, P., Cox, R., Good, J., Learning to think and communicate with
diagrams, Proceedings of Thinking and Learning with diagrams II
workshop, Portsmouth, 1997

BE01 Blackwell A., Engelhardt Y., A meta-taxonomy for diagram research,
Diagrammatic Representation and Reasoning, Olivier P., Anderson M.,
Meyer B., (editors), Springer-Verlag, 2001

Be94 Batten E., New Computer Grading of Student Prose, Using Modern
Concepts and Software, Journal of Experimental Education, 1994, Issue
62, Volume 2, Pages 127-142

BE98 Blackwell A., Engelhardt Y., A taxonomy of diagram taxonomies, In
Proceedings of Thinking with Diagrams 98: Is there a Science of
Diagrams? , 1998, Pages 60-70

Bg91 Booch G., Object Oriented Design with Applications, Benjamin
Cummings, Redwood City, CA, 1991

BG97 Beck K., Gamma E., Advanced Design with Patterns in Java,
OOPSLA’97, Tutorial No. 30

BGK+96 Broy M., Grosu R., Klein C., Rumpe, B., State Transition Diagrams,
Technical Report TUM-I-9630, Technical University of Munchen, 1996

BGL+95 Burnett, M., Goldberg, A., Lewis, T., Visual Object Oriented
Programming , Manning Publications Co., 1995, ISBN 0131723979

BH98 Brynjolfsson E., Hitt L., Beyond the productivity paradox,
Communications of the ACM, Volume 41, Issue 8, Publisher ACM Press
New York, NY, USA, 1998, Pages 49-55

Bj93 Bull J., Using Technology to Assess Student Learning, TLTP Project
Alter, December 1993, ISBN 1 85889 091 8

BJ94 Brant J., Johnson R., Creating tools in HotDraw by composition, In
TOOLS Europe 13, 1994

Bibliography 218

Bj95 Brant J., HotDraw, MSc thesis, University of Illinois, Urbana-
Champaign, 1995

Bj99 Bull, J., Update on the National TLTP3 Project: The implementation and
evaluation of computer-assisted assessment, Keynote, Proceedings of
the 3rd Annual Computer Assessment Conference, Loughborough, UK,
16-17 June, 1999

BJR98 Booch G., Jacobson I., Rumbaugh J., The UML User Guide, Addison
Wesley, 1998

BKW+98 Burstein J., Kukich K., Wolff S., Lu C., Chodorow M., Computer
Analysis of Essays, NCME Symposium on Automated Scoring, April
1998

Bl85 Bagrow L., History of cartography, 2nd edition, Chicago, Precedent
Publishers, 1985

BLN86 Batini C., Lenzerini M., Navathe B., A comparative analysis of
methodologies for database schema integration, ACM Computing
Surveys, Volume 18 (4), December 1986

BM95 Burnett M., McIntyre D., Visual Programming, Computer 28, Volume 3,
14-16 March, 1995, Available from
citeseer.nj.nec.com/burnett99visual.html

BMF+96 Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M., Pattern-
Oriented Software Architecture - A System of Patterns, Wiley and Sons,
1996

BMM+98 Brown W. H., Malveau R. C., McCormick III H. W., Mowbray T. J., Anti
Patterns - Refactoring Software, Architectures and Projects in Crisis,
Wiley, 1998, ISBN 0471197130

BMS+01

Brailsford T., Moore A., Stewart C., Zakaria M., Choo B., Davies P.,
Towards a framework for effective web-based distributed learning, 10th
International World Wide Web Conference, Hong Kong, May 1-5, 2001

BR96 Brown S., Race P., 500 Tips on assessment, Cogan Page, London, UK,
1996

BS00 Buck D., Stucki D., Design early considered harmful: graduated
exposure to complexity and structure based on levels of cognitive
development, Proceedings of the 31st SIGCSE Technical Symposium on
Computer Science Education, TX USA, March 7 - 12, 2000, Pages 75 – 79

Bs56 Bloom, B., Taxonomy of Educational Objectives, New York, David
McKay Company, 1956

Bibliography 219

Cc01 Cleaveland C., Program Generators with XML and Java, Prentice Hall
PTR, 2001, ISBN 0-13-025878-4

CE00 Czarnecki K., Eisenecker U., Generative Programming, Methods, Tools,
and Applications, Addison Wesley, 2000

CE98a Charman D., Elmes A., Computer Based Assessment: A guide to good
practice, Volume I, University of Plymouth, 1998

CE98b Charman D., Elmes A., Computer Based Assessment: A guide to good
practice, Volume II, University of Plymouth, 1998

Cf98 Culwin F., Web hosted assessment--possibilities and policy,
Proceedings of the 6th annual Conference on the Teaching of
Computing/3rd Annual ITiCSE Conference on Changing the Delivery
of Computer Science Education, 1998, Pages 55–58

CHS+97 Codenie W., Hondt K., Steyaert P., Vercammen A., From custom
applications to domain-specific frameworks, Communications of the
ACM, Volume 40, 1997, Pages 70–77

Cj92 Coplien J., Advanced C++ Programming Styles and Idioms, Addison-
Wesley, Reading, MA, 1992

Cj95 Coplien J., A Development Process Generative Pattern Language, In
Coplien J., Schmidt D., (editors), Pattern Languages of Program Design,
chapter 13, Addison-Wesley, Reading, MA, 1995, Pages 183-237

Cj99 Christie J., Automated Essay Marking for both Style and Content,
Proceedings of the 3rd Annual Computer Assessment Conference,
Loughborough, 16-17 June 1999

CM01 CourseMaster Design Document, LTR Group, Technical
Documentation, Computer Science Department, University of
Nottingham, June, 2001

Cm93 Clarke M., Possible models diagrams: a visual alternative to truth tables,
Proceedings of the 24th SIGCSE technical symposium on computer
science education, Indianapolis, USA, February 18 - 19, 1993, Pages 232–
236

Cp76 Chen P., The Entity-Relationship Model: Toward a Unified View of
Data, ACM Transactions on Database Systems, Volume 1, March, 1976,
Pages 9-36

Cp92 Coad P., Object-Oriented Patterns, Communications of the ACM
Volume 35, Issue 9, 1992, Pages 152-159

CS95 Coplien J., Schmidt D., (editors), Pattern Languages of Program Design,
Volume 1, Addison-Wesley, Reading, 1995

Bibliography 220

CS98 Canup M., Shackelford R., Using software to solve problems in large
computing courses, Proceedings of the 29th SIGCSE, Technical
Symposium on Computer Science Education, Atlanta, USA, 1998, Pages
135–139

Cso01 Computer Systems Odessa Ltd., Concept Draw Users Manual, July
2001, Available from
conceptdraw.com/en/resources/Help/CONTENTS.html

CW00 Coplien J., Wolf B., A Pattern Language for Writer’s Workshops, In
Foote B., Harrison N., Rohnert H., (editors), Pattern Languages of
Program Design 4, Addison Wesley, Reading, MA, 2000, chapter 25,
Pages 557-584

CY90 Coad P., Yourdon E., Object-Oriented Analysis, Yourdon Press/Prentice
Hall, Englewood Cliffs, New Jersey, 1990

Dc99 Daly C., RoboProf and an introductory computer programming course,
Proceedings of the 4th annual SIGCSE/SIGCUE on Innovation and
Technology in Computer Science Education June 27 - 30, 1999, Krakow
Poland, Pages 155 – 158

Dd99 Dodson D., Diagrammatic Interaction, Tutorial, Computer Science
Department, City University, London, 12 February 1999

Df83 Day F., Computer Aided Software Engineering (CASE), Annual ACM
IEEE Design Automation Conference archive Proceedings of the 20th
Design Automation Conference, 1983, Pages: 129–136, ISBN 0-8186-
0026-8

DG99 Dalziel, J. and Gazzard, S., Next generation computer assisted
assessment software: the design and implementation of WebMCQ,
Proceedings of the 3rd Annual Computer Assessment Conference,
Loughborough, UK, 16-17 June, 1999

DMN+97 Demeyer S., Meijler Y., Nierstrasz O., Steyaert P., Design guidelines for
tailorable frameworks, Communications of the ACM, Volume 40, 1997,
Pages 60–64

Dp89 Denning P., A debate on teaching computing science, Communications
of the ACM, Volume 32, 1989, Pages 1397–1414

DS98 Dowd K., Severance C., High Performance Computing, 2nd Edition, 2nd
Edition, July, 1998, Pages 121-122, ISBN 1-56592-312-X

Dw00 Doube W., Distance teaching workloads, Proceedings of the 31st SIGCSE
technical symposium on Computer Science Education, Austin, TX USA,
March 7 - 12, 2000, Pages 347–351

http://www.oreilly.com/catalog/hpc2

Bibliography 221

Ea96 Endres A., History of Software Engineering, Seminar 9635, Schloß
Dagstuhl, Conference title: A Synopsis of Software Engineering History
- the Industrial Perspective, August 26-30, 1996

eb11 Encyclopaedia Britannica, 11th edition, University Press, Cambridge,
1911

Eb98 Eckel B., Thinking in Java, Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1998

Edu02 Educational Testing Service, Available from www.ets.org, 2002

EG97 Do E., Gross M., Thinking with Diagrams in Architectural Design,
International Conference on Thinking with Diagrams, Portsmouth,
January 9-10, 1997

El61 Euler L., Lettres a une princesse d’Allemagne, volume 2, Letters
Number 102-108, 1761

En01 Eaton N., Microsoft Visio Version 2002 Inside Out, Microsoft Press,
June, 2001, ISBN 0735612854

ES00 English J., Siviter P., Experience with an automatically assessed course,
5th annual SIGCSE /SIGCUE conference on Innovation and Technology
in Computer Science Education, Helsinki Finland, July 11 - 13, 2000,
Pages 168 – 171

EX95 Examine, Biology Software News, Issue 6, September, 1995, page 30

FD01 Friendly M., Denis D., Milestones in the History of Thematic
Cartography, Statistical Graphics, and Data Visualisation,
An illustrated chronology of innovations, Available from
www.math.yorku.ca/SCS/Gallery/milestone/index.html, May 2001

FGZ+93 Foxley E., Gutteridge N., Zin A., Benford S., Burke E., Early experiences
of computer aided assessment and administration when teaching
computer programming, Association for Learning Technology Journal,
Issue 2, 1993, Pages 55-70

FHG96 Foxley E., Higgins C., Gibbon C., The Ceilidh System : A General
Overview, LTR Report, Computer Science Department, The University
of Nottingham, UK, 1996

FHH+01 Foxley E., Higgins C., Hegazy T., Symeonidis P., Tsintsifas A., The
CourseMaster CBA System: Improvements over Ceilidh, 5th Annual
Computer Assisted Assessment Conference, Loughborough, UK, 2-4
July, 2001, Pages 189-201, ISBN 0-9539572-0-9

FHT+98 Foxley E., Higgins C., Tsintsifas A., Symeonidis P., Security Issues
under Ceilidh's WWW Interface, Proceedings of ICCE'98, Volume 1,
Beijing, China, October 14-17, 1998, Pages 235-240

http://www.dagstuhl.de/DATA/Reports/9635/report.9635.html
http://www.ets.org/
http://www.math.yorku.ca/SCS/Gallery/milestone/index.html

Bibliography 222

FHT+99 Foxley E., Higgins C., Tsintsifas A, Symeonidis P. Ceilidh, a System for
the Automatic Evaluation of Student Programming Work, Proceedings
of the 4th International Conference on Computer Based Learning in
Science (CBLIS99), University of Twente, Netherlands, July 2-6, 1999,
Section I6

FHT98 Foxley E., Higgins C., Tsintsifas A., The Ceilidh System: A general
overview, Proceedings of the 2nd Annual International Computer
Assisted Assessment Conference, Loughborough, UK, 17-18 June, 1998

Fj99 Ferraiolo J., Scalable vector graphics (SVG) 1.0 specification, W3C
Working Draft, December, 1999

Fk96 Fisler K., Exploiting the Potential of Diagrams in Guiding Hardware
Reasoning, In G. Allwein and Barwise J., (editors), Logical Reasoning
with Diagrams, Oxford University Press, 1996

FL94 Foxley E., Lou B., A Simple Text Automatic Marking System, Artificial
Intelligence and Simulation of Behaviour 94 Conference for:
Computational Linguistics for Speech and Handwriting Recognition,
Workshop in Leeds University, UK, April 12th, 1994

Fm97 Fowler M., Analysis Patterns: Reusable Object Models, Addison
Wesley, Reading, 1997

Fm99 Fowler M., Refactoring: Improving the Design of Existing Code,
Addison-Wesley, Reading, 1999

FNT97 Foxley E., Nobar P., Tsintsifas A., Ceilidh and the World Wide Web,
Proceedings of the 3rd International Conference on Computer Based
Learning in Science, Leicester, UK, July 4-8, 1997, Section G6, ISBN 80-
7040-217-2

Fr79 Floyd R., The paradigms of programming, Communications of the
ACM, Volume 22, 1979, Pages 455–460

FS97 Fowler M., Scott K., UML Distilled: Applying the Standard Object
Modelling Language, Addison-Wesley, New York, 1997, ISBN 0-201-
32563-2

FSZ97 Foxley E., Salman O., Shukur Z., The automatic assessment of Z
specifications, Working group reports and supplemental proceedings,
Uppsala, Sweden, June 1 - 5, 1997

FW65 Forsythe G., Wirth N., Automatic grading of programs,
Communications of the ACM, Issue 8, 1965, Pages 275-278

FWW00 Ferguson R., Hunter A., Hardy C., MetaBuilder: The diagrammer's
diagrammer, Lecture Notes in Artificial Intelligence, Springer Verlag,
Theory and Applications of Diagrams, First International Conference,
Edinburgh, September 2000, Pages 407-421

Bibliography 223

FZ93 Foxley E., Mohd Zin A. M., The Oracle output recogniser, LTR Report,
Computer Science Department, The University of Nottingham, 1993

Gc92 Goldfarb C., The SGML Handbook, Oxford University Press, 1992

Gd98 Griswold D., The Java HotSpot virtual machine architecture, March,
1998, Available from
www.javasoft.com/products/hotspot/whitepaper.html

Ge84 Goldsmith, E., Research into illustration: An approach and a review,
Cambridge University Press, 1984

Gg92 Gibbs G., Assessing More Students, Oxford Centre for Staff
Development, Oxford Brookes University, 1992

GHJ+94 Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1994

GJS97 Gosling J., Joy B., Steele G., The Java Language Specification, Addison
Wesley, 1997

GMW88 Gamma E., Marty R., Weinand A., ET++ - an object oriented application
framework in C++, Conference Proceedings on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA’88), San
Diego, CA USA, September 25 - 30, 1988, Pages 46-57

Gr96 Guerraoui R., Strategic Research Directions in Object-Oriented
Programming, ACM Computing Surveys, Volume 28 Issue 4,
December, 1996

Gr98 Gisselquist R., Engineering in software, Communications of the ACM,
Volume 41, 1998, Pages 107–108

GS79 Gane C., Sarson T., Structured Systems Analysis, Prentice-Hall, 1979

GS95 Gaines B., Shaw M., Concept maps as hypermedia components,
Knowledge Science Institute, University of Calgary, 1995

GS96 Garfinkel S., Spafford G., Practical Unix and Internet Security, O’Reilly
and Associates Inc., 1996

Gt00 Greening T., Pedagogically sound responses to economic rationalism,
Proceedings of the 31st SIGCSE technical symposium on Computer
Science Education, Austin, TX USA, March 7-12, 2000, Pages 149–156

GV47 Goldstine H., Neuman J., Planning and Coding Problems for an
Electronic Computing Instrument, Volumes I, II, III, Van Nostrand,
Princeton, N.J., 1947 and 1948

Hd88 Harel D., On visual formalisms, Communications of the ACM, Volume
31,May 1988, Pages 514 – 530

http://www.javasoft.com/products/hotspot/whitepaper.html

Bibliography 224

HHS+01 Higgins C., Hegazy T., Symeonidis P., Tsintsifas A., The CourseMaster
CBA System, submitted to the Journal of Education and Information
Technologies (official Journal of the IFIP Technical Committee on
Education) published by Chapman and Hall, ISBN 1360-2357

Hi72 Hispalensis I., De responsione mundi et de astrorum ordinatione,
Ausburg, Gunther Zainer, December 7, 1472

Hi88 Hirmanpour I., A student system development diagrammer,
Proceedings of the 19th SIGCSE technical symposium on Computer
Science Education, 25 – 26 February, 1988, Atlanta, GA USA, Pages 104-
108

Hj94 Holmevik J., Compiling SIMULA: A Historical Study of Technological
Genesis, Annals of the History of Computing, Volume 16, Issue 4, 1994

Hj98 Hammond J., Chart-Wizard: A marks visualisation editor for
CourseMaster, M.Sc. Thesis, Information Technology Institute, The
University of Nottingham, UK, 1998

HL96 Holland I., Lieberherr K., Object-Oriented Design, ACM Computing
Surveys, Volume 28, No 1, March 1996

HL98 Hoggarth G., Lockyer M., An automated student diagram assessment
system, Proceedings of the 6th Annual Conference on the Teaching of
Computing/3rd Annual Conference on Integrating Technology Into
Computer Science Education on Changing the Delivery of Computer
Science Education, Dublin, Ireland, 18 – 21 August, 1998, Pages 122 - 124

Hl98 Hern L., The Java Assessor, B.Sc. Dissertation, Computer Science
Department, The University of Nottingham, UK, 1998

Hm77 Halstead M., Elements of Software Science, North Holland, 1977

HMM00 Herman I., Melancon G., Marshall M., Graph visualization and
navigation in information visualization: A survey, IEEE Transactions on
Visualization and Computer Graphics, Volume 6, Issue 1, 2000, Pages
24-43

Hs01 Holzner S., Inside XML, New Riders Publishing, 2001, ISBN 0-7357-
1020-1

HS84 Henry S., Kafura D., The evaluation of software system's structure using
quantitative, software metrics, Software - Practice and Experience,
Volume 14, Issue 6, June, 1984, Pages 561-573

Hs90 Hekmatpour S., Templa and Graphica A Generic Graphical Editor for
the MacIntosh, Prentice Hall, New York, 1990

Bibliography 225

HST02 Higgins C., Symeonidis P., Tsintsifas A., The Marking Sybsystem for
CoureMaster, to be presented at the 7th Annual Conference on
Integrating Technology Into Computer Science Education, University of
Aarthus, Denmark, June 24-26, 2002

Hv99 Hardy V., Java 2D API Graphics, Prentice-Hall, Englewood Cliffs, New
Jersey, USA, 1999

HW96 Haarslev V., Wessel M. GenEd : an editor with generic semantics for
formal reasoning about visual notations, IEEE Computer Society Press,
In 1996 IEEE Symposium on Visual Languages, Boulder, Colorado,
USA, 3-6 September, 1996, Pages 204—211, Available from
citeseer.nj.nec.com/haarslev96gened.html

ISO00 International Standards Organisation (ISO), Available from
www.iso.org

JCJ+92 Jacobson I., Christerson M., Johnsson P., Overgaard G., Object Oriented
Software Engineering: A use case driven approach, Prentice Hall,
Englewood Cliffs, New Jersey, 1992

Jd00 Jackson D., A semi-automated approach to online assessment, 5th
Annual SIGCSE/SIGCUE Conference on Innovation and Technology in
Computer Science Education, Helsinki, Finland, 11 – 13 July, 2000,
Pages 164-167

JFS99 Johnson R., Fayad M., Schmidt M., Building Application Frameworks,
Wiley, 1999

Jj91 Jeffrey J., Using Petri nets to introduce operating system concepts,
Papers of the 22nd SIGCSE Technical Symposium on Computer Science
Education, San Antonio, TX USA, March 7 – 8, 1991, Pages 324–329

JL98 Joy M., Luck M., Effective electronic marking for on-line assessment,
Proceedings of the 6th annual conference on the teaching of
computing/3rd annual conference on integrating technology into
computer science education on changing the delivery of computer
science education, Dublin, Ireland, August 18 - 21, 1998, Pages 134–138

JN83 Jajodia S., Ng P., On the representation of relational structures by entity-
relationship diagrams, Entity-Relationship Approach to Software
Engineering, editors Davis C.G., Jajodia S., Ng P.A., Yeh R., North-
Holland, 1983, 249-263

Jr92 Johnson R., Documenting Frameworks using Patterns, Proceedings of
OOPSLA’92, ACM SIG-PLAN Notices, Volume 27, Number 10,
Vancouver BC, Canada, October 1992, Pages 63-76

Jr97 Johnson R., Frameworks = (components + patterns), Communications
of the ACM, Volume 40, 1997, Pages 39 – 42

http://www.iso.org/

Bibliography 226

JU97 Jackson D., Usher M., Grading student programs using ASSYST,
Proceedings of the 28th SIGCSE Technical Symposium on Computer
Science Education, San Jose, CA USA, February 27- March 1, 1997,
Pages 335–339

Ka52 Kircher A., Oedipus Aegyptiacus, Rome, Italy, 1652

Ka69 Kay, A., The Reactive Engine, Ph.D. Thesis, Electrical Engineering and
Computer Science Department, University of Utah, 1969

Ka77 Kay, A., Personal Dynamic Media, IEEE Computer Magazine, Volume
10, Issue 3, 1977, Pages 31-42

Ka97 Kay A., The Computer Revolution Hasn’t Happened Yet, Key-talk in
the International Conference for Object-Oriented Programming
Languages and Applications (OOSPLA’97), Video session distributed
by University Video Communications, Stanford, Available from
www.uvc.com, 1997

KB99 McKenna C., Bull J., Designing effective objective test questions: and
Introductory Workshop, Proceedings of the 3rd Annual Computer
Assessment Conference, Loughborough UK, June 16-17, 1999

KB99b McKenna C., Bull J., The CAA Centre National Survey of CAA,
Association for Learning Technology Conference, Bristol, UK,
September, 1999

KH01 Kiczales G., Hilsdale E., Aspect-Oriented Programming with AspectJ
version 1.0rc2, Tutorial in the International Conference for Object-
Oriented Programming Languages and Applications, (OOPSLA 2000),
October 15, 2000

KLM+97 Kiczales G., Lamping J., Mendheker A., Maeda C., Lopes C., Loingtier J.
M., Irwin J., Aspect-Oriented Programming, ECOOP’97, Springer-
Verlag, Lecture Notes in Computer Science, 1997, Pages 220-242

KM00 Korhonen A., Malmi L., Algorithm simulation with automatic
assessment, 5th annual SIGCSE/SIGCUE Conference on Innovation and
Technology in Computer Science and Education, Helsinki Finland, July
11-13, 2000, Pages 160-163

KM90 Korson T., McGregor J., Understanding object-oriented: a unifying
paradigm, Communications of the ACM, Volume 33, 1990, Pages 40-60

KSI+94 Kay D., Scott T., Isaacson P., Reek K., Automated grading assistance for
student programs, Selected papers of the 25th annual SIGCSE
Symposium on Computer Science Education, Phoenix, AR USA, March
10–12, 1994, Pages 381–382

Kt70 Kuhn T., The Structure of Scientific Revolutions, University of Chicago
Press, Chicago, 1970

http://www.uvc.com/

Bibliography 227

Kw01 Kaiser W., Become a programming Picasso with JHotDraw, JavaWorld,
February 2001, Available from www.javaworld.com/javaworld/jw-02-
2001/jw-0216-jhotdraw.html

Kz94 Kulpa Z., Diagrammatic Representation and Reasoning, Machine
Graphics & Vision, Volume 3, 1994, Pages 77-103

LBW+94 Lohse G., Biolsi K., Walker N., Rueter H., A classification of visual
representations, Communications of the ACM Volume 37, Issue 12,
1994, Pages 36-49

Ld94 Lea D., Christopher Alexander: An introduction for object-oriented
designers, Software Engineering Notes, Volume 19, Issue 1, January
1994, Pages 39-46

LH92 Lim B., Hunter R., DBTool: a graphical database design tool for an
introductory database course, Proceedings of the 23rd Technical
Symposium on Computer Science Education, Kansas City, MO USA,
March 5-6, 1992, Pages 24-27

Lk96 Lieberherr K., Adaptive Object-Oriented Software, PWS Publishing Co.,
1996

Ln97 Labeke N., Prise en compte de l’usager enseignant dans la conception
des EIAO: Illustration dans Calques 3D, Ph.D. Thesis, Henri Poincare
University, Nancy, France, 1997

LB81 Lientz B., Burton E., Problems in application software maintenance,
Communications of the ACM, Volume 24, 1981, Pages 763–769

LS87 Larkin J., Simon H., Why a diagram is (sometimes) worth ten thousand
words, Cognitive Science, 1987, Pages 65-99

Lt95 Lewis T., Object Oriented Application Frameworks, Manning
Publications Co., 1995

LVC89 Linton M., Vlissides J., Calder P., Composing User Interfaces with
InterViews, IEEE Computer, February, 1989, Pages 8-24, Available from
citeseer.nj.nec.com/linton89composing.html

Mac95 Macromedia, Macromedia Authorware Version 3: Using Authorware,
Macromedia Inc., 1995

Mb88 Meyer B., Object-Oriented Software Construction, Prentice Hall, New
York, 1988

Mb90 Myers B., A new model for handling input, ACM Transactions on
Information Systems, Volume 8, Issue 3, 1990, Pages 289-320

Mb98 Myers B., A Brief History of Human Computer Interaction Technology,
ACM interactions, Volume 5, Number 2, March, 1998, Pages 44-54

http://www.javaworld.com/javaworld/jw-02-2001/jw-0216-jhotdraw.html
http://www.javaworld.com/javaworld/jw-02-2001/jw-0216-jhotdraw.html

Bibliography 228

Md99 Mackenzie, D., Recent developments in the Tripartite Interactive
Assessment Delivery System (TRIADS), Proceedings of the 3rd Annual
Computer Assessment Conference, Loughborough, UK, June 16-17,
1999

MGC98 Mansouri F., Gibbon C., Higgins C., PRAM: Prolog Automatic Marker,
Proceedings of the 6th Annual Conference on the Teaching of
Computing/3rd Annual Conference on Integrating Technology Into
Computer Science Education on Changing the Delivery of Computer
Science Education, Ireland, 1998, Pages 166–170

MHC+96 Myers B., Hollan J., Cruz I., Bryson S., Bulterman D., Catarci T., Citrin
W., Glinert E., Grudin J., Ioannidis Y., Strategic directions in human-
computer interaction, ACM Computing Surveys, Volume 28, Issue 4,
1996, Pages 794-809

MHG98 Mugridge, W. B., Hosking, J. G. and Grundy, J. C., Vixels,
CreateThroughs, DragThroughs and Attachment Regions in
BuildByWire, in Computer Human Interaction (CHI'98), December,
1998

MHP00 Myers B., Hudson S., Pausch R., Past, present, and future of user
interface software tools, ACM Transactions on Computer-Human
Interaction, Volume 7, Issue 1, 2000, Pages 3-28

Mic01 Microsoft Corporation, Microsoft Word 2000, 2001, Available from
www.microsoft.com

Mic94 Microsoft Corporation, Visual C++ and Microsoft Foundation Class
Library Manuals, Microsoft Press, 1994

Mic95 MicroGraphics Inc., ABC FlowCharter User’s Manual, MicroGraphics
Inc., 1995

Mj00 Morley J., Animating the execution of programs, B.Sc. Dissertation,
Computer Science Department, The University of Nottingham, 2000

MM85 Martin J., McClure C., Diagramming techniques for analysts and
programmers, Prentice-Hall International, Englewood Cliffs, New
Jersey, 1985

MMM95 Milli H., Milli F., Milli A., Reusing software: Issues and research
directions, IEEE Transactions On Software Engineering, Volume 21,
Issue 6, 1995, Pages 529-561

Mn01 Miller N., A Diagrammatic formal system for eucliden geometry, Ph.D.
Thesis, Cornell University, 2001

MO95 Martin J., Odell J., Object-Oriented Methods: A Foundation, Prentice
Hall, Englewood Cliffs, New Jersey, 1995

Bibliography 229

Mp00 Machanick P., Experience of Applying Bloom's Taxonomy in Three
Courses, Technical Report, TR-Wits-CS-2000-7, May, 2000

MP70 Moder J., Phillips C., Project management with CPM and PERT, Van
Nostrand Reinhold Company, 1970

Mr86 Myers R., Computerized Grading of Freshman Chemistry Laboratory
Experiments, Journal of Chemical Education, Volume 63, 1986, Pages
507-509

Mt76 McCabe T., A Software Complexity Measure, IEEE Transaction in
Software Engineering, December, 1976, Pages 308-320

MV95 Minas M., Viehstaedt G., DiaGen: A generator for diagram editors
providing direct manipulation and execution of diagrams, Proceedings
of the International Conference on Visual Languages (VL'95),
Darmstadt, Germany, 1995, Pages 203-210

MW98 Mason D., Woit D., Integrating technology into computer science
examinations, Proceedings of the 29th SIGCSE Technical Symposium on
Computer Science Education, Atlanta, GA USA, February 26 - March 1,
1998, Pages 140-144

MW99 Mason D., Woit D., Providing mark-up and feedback to students with
online marking, Proceedings of the 30th SIGCSE Technical Symposium
on Computer Science Education, March 24–28, 1999, New Orleans, LA
USA, Pages 3-6

Nh97 Narayanan H., Diagrammatic communication: A taxonomic overview,
Perspectives on Cognitive Science, Volume 3, New Bulgarian University
Press, 1997

Nj94 Nickerson J., Visual Programming, Ph.D. Dissertation, New York
University, 1994

Nk00 Nørmark K., A suite of WWW-based tools for advanced course
management, 5th Annual SIGCSE/SIGCUE Conference on Innovation
and Technology in Computer Science Education, Helsinki, Finland, July
11 – 13, 2000

Np98 Neumann P., Risks of e-education, Communications of the ACM,
Volume 41, 1998, Page 136

NR68 Naur P., Randell B., NATO Conference on Software Engineering,
Garmish, Germany, October 1968

Op92 Opdyke W., Refactoring Object Oriented Frameworks, Ph.D. Thesis,
University of Illinois at Urbana-Champaign, 1992

Oe80 Oviedo E., Control flow, data flow and program complexity,
Proceeding of IEEE COMPSAC, 1980, Pages 146-152

Bibliography 230

Omg96 Object Management Group (OMG), The Common Object Request
Broker: Architecture and Specification (CORBA), Revision 2.0, OMG,
1995

Osf91 Open Software Foundation, OSF/Motif Programmer's Guide, version
1.1, 1991

p99 President’s Information Technology Advisory Committee, Information
Technology Report: Inversting in our Future, Report to the President,
February 1999, Available from www.ccic.gov/ac/report/

Pac01 PaceStar Software, EDGE User’s Manual, PaceStar Software, Phoenix,
USA, 2001, Available from www.pacestar.com

Pc33 Peirce C., Collected Papers, Volume 4, Harvard University Press, 1933

Pc65 Petri C., Kommunikation mit Automaten, Ph.D. thesis, Translation by
Greene C. F., Supplement to Technical Report RADC-TR-65-337,
Volume 1, Rome Labs, Griffiss Air-Force Base, New York, USA, 1965

Pc99 Power C., Designer--a logic diagram design tool, Proceedings of the 4th
Annual SIGCSE/SIGCUE on Innovation and Technology in Computer
Science Education, Krakow, Poland, June 27 – 30, 1999, Page 211

Pp00 Plasman P., private email sent to LTR, University of Nottingham, april,
2000

PS98 Preston J.A., Shackelford R. A system for improving distance and large-
scale classes, Proceedings of the 6th Annual Conference on the Teaching
of Computing/3rd Annual Conference on Integrating Technology into
Computer Science Education on Changing the Delivery of Computer
Science Education, Dublin, Ireland, 1998, Pages 193–198

Qm01 QuestionMark Inc, Question Types Used to Computerised Assessments,
QuestionMark Documentation, 2001, Available from
www.questionmark.com/us/learningcafe/index.htm

Ra96 Riel A., Object Oriented Design Heuristics, Addison Wesley, 1996

Rat00 Rational Software Corporation, Rational Rose 2000, Available from
www.rational.com

Rb96 Randell B., The 1968/69 NATO Software Engineering Reports, Dagstuhl
Seminar 9635 organized by Aspray W., Keil-Slawik R. and Parnas D.,
August 26-30, 1996

RBP+91 Rumbaugh J., Blaha M., Premerlani W., Eddy F., Lorensen W., Object-
Oriented Modelling and Design, Englewood Cliffs, New Jersey: Prentice
Hall, 1991, ISBN: 0-13-630054-5

http://www.pacestar.com/
http://www.questionmark.com/us/learningcafe/index.htm
http://www.rational.com/

Bibliography 231

RH83 R. M. Rottmann and H. T. Hudson, Computer Grading As an
Instructional Tool, Journal of College Science Teaching, Volume 12,
1983, Pages 152-156

Rj67 Raskin J., A Hardware-Independent Computer Graphics System, Ph.D.
thesis, Computer Science Department of Pennsylvania State University,
1967

Rj84 Richards, J., Diagrammatics: an investigation aimed at providing a
theoretical framework for studying diagrams and for establishing a
taxonomy of their fundamental modes of graphic organisation, Ph.D.
thesis, Royal College of Art, UK, 1984

RJB99 Rumbaugh J., Jacobson I., Booch G., The Unified Modelling Language
Reference Manual, Addison Wesley, Reading, 1999

Rl00 Rising L., Pattern Almanac 2000, Addison Wesley, ISBN 0-201-61567-3,
2000

Rl96 Rosenstein L., MacApp: First Commercially Successful Framework, in
Object Oriented Application Frameworks, Lewis T. (editor), Manning
Publications Co., 1995, Pages 112-114

RMB97 Riehle D., Martin R., Buschmann F., (editors), Pattern Languages of
Program Design, Volume 3, Reading, Massachusetts, Addison-Wesley,
1997

Rr63 Rossheim R., Report on proposed American standard flowchart
symbols for information processing, Communications of the ACM,
Volume 6, Issue 10, 1963, Pages 599-604

RSH01 Rangarajan K., Swaminathan N., Hedge V., Jacob J., Product Quality
Framework: A Vehicle for Focusing on Product Quality Goals, ACM
SigSoft, Software Engineering Notes, Volume 26, Number 4, July, 2001,
Pages 77-82

Sa98 Sinan A., UML in a Nutshell, O'Reilly, 1998

Sb83 Shneiderman, B., Direct Manipulation: A Step Beyond Programming
Languages, IEEE Computer, Volume 16, Issue 8, 1983, Pages 57-69

SCB+96 Summons P., Coldwell J., Bruff C., Henskens F., Automated assessment
and marking of spreadsheet concepts, Proceedings of the Second
Australasian Conference on Computer Science Education, Sydney,
Australia, 3 – 5 July, 1996, Pages 178–184

SHG+98 Souder D., Herrington M., Garg P., DeRyke D., JSPICE: A component-
based distributed Java front-end for SPICE, Proceedings of the 1998
Workshop on Java for High-Performance Network Computing, 1998

Bibliography 232

Si63 Sutherland, I., Sketchpad: A Man-Machine Graphical Communication
System, in AFIPS Spring Joint Computer Conference, Volume 23, 1963,
Pages 329-346

Si96 Sommerville I., Software Engineering, 5th Edition, Addison-Wesley,
1996

SJF96 Schmidt D., Johnson R., Fayad M., Software Patterns, Communications
of the ACM, Special Issue on Design Patterns, Volume 39, Number 10,
October, 1996

SL93 Schonwalder J., Langendorfer H., Ined - an application independent
network editor, In Proceedings of the International Conference On
Tools and Techniques for System Administration, Networking, and
Security, Arlington, Virginia, USA, April, 1993

SM00 Sanders I., Mueller C., A fundamentals-based curriculum for first year
computer science, Proceedings of the 31st SIGCSE Technical Symposium
on Computer Science Education, Austin, TX USA, March 7–12, 2000,
Pages 227-231

SM88 Shlaer S., Mellor S., Object Oriented System Analysis: Modelling the
World in Data, Prentice Hall, Englewood Cliffs, New Jersey, 1988

SM92 Simas R., McBeath R., Constructing multiple choice items, In Instructing
and Evaluating in Higher Education, Educational Technology
Publications, Englewood Cliffs, New Jersey, 1992

SM97 Stephens, D., Mascia, J., Results of a Survey into the Use of Computer
Assisted Assessment in Institutions of Higher Education in the UK 1995,
Loughborough Flexible Learning Initiative, ISBN 095332 1029, 1997,
Page 24

Sma01 SmartDraw.com, SmartDraw User's Guide, Version 5, 2001, SmartDraw,
San Diego, USA, Available from www.smartdraw.com

SMM+96 Sharp H., Manns, M., McLaughlin P., Prieto, M., Dodani M.,
Pedagogical Patterns - Successes in Teaching Object Technology, ACM
SIGPLAN Notices, Volume 31, Issue 12, December, 1996, Pages 18-21,
Available from www.cs.unca.edu/~manns/oopsla.html

SN73 Nassi I., Schneiderman B., Flowchart Techniques for Structured
Programming, ACM SIGPLAN Notices Journal, Volume 8, 1973, Pages
12-26

Sp01 Symeonidis P., An in-depth review of CourseMaster Marking
SubSystem, Technical Report, LTR Group, University of Nottingham,
UK, 2001

http://www.smartdraw.com/
http://www.cs.unca.edu/~manns/oopsla.html

Bibliography 233

Sp96 Sommerlad P., Command Processor, in Pattern Languages of Program
Design, Volume 2, editors Vlissides J., Kerth N., Coplien J., Addison-
Wesley, Reading, Massachusetts, 1996

SRJ97 Smith T., Ruocco A., Jansen B., Digital video in education, Proceedings
of the 30th SIGCSE Technical Symposium on Computer Science
Education, New Orleans, LA USA, 1997, Pages 122-126

Ss93 Schach D., Software Engineering, 2nd Edition, Richard D. Irwin, Inc. and
Aksen Associates, 1993

Sun01 SUN Microsystems Inc., Java 2D API White Paper, 2001, Available from
java.sun.com/products/java-media/2D/whitepaper.html

Sun96 Sun Microsystems Inc., RMI Documentation, 1996, Available from
www.javasoft.com/apis

Sun98 Sun Microsystems Inc., Java Foundation Classes Specification, 1998,
Available from java.sun.com/products/jfc

Sun99 Sun Microsystems Inc., Enterprise JavaBeans Specification 1.1, 1999,
Available from java.sun.com/products/ejb

Ta01 Tsintsifas A., The DATsys Design Document, Technical Documentation,
Computer Science Department, University of Nottingham, May, 2001,
Available from www.cs.nott.ac.uk/~azt/daidalos/docs/design.html

Ta97 Tuovinen A., Towards a Framework for Developing Processors for
Visual Languages, European Conference on Object Oriented
Pprogramming (ECOOP’97), 1997

Tb93 Buzan T., The Mind Map Book: Radiant Thinking - the major evolution
in human thought, BBC Publications, 1993

TBF97 Tinoco L., Barnette D., Fox E., Online evaluation in WWW-based
courseware, Proceedings of the 28th SIGCSE technical symposium on
computer science education, San Jose, CA USA, February 27 - March 1,
1997, Pages 194–198

TD76 Taylor J., Deever D., Constructed-response, computer-graded
homework, American Journal of Physics 44, Pages 598-599

Td99 Tsichritzis D., Reengineering the university, Communications of the
ACM, Volume 42, 1999, Pages 93-100

Tek87 Tektronix Computer Research Laboratory, Semantic Drawing with
HotDraw, Technical Report CR-87-34, April, 1987

Tk00 Tourlas K., Diagrammatic Representations in Domain Specific
Languages, Ph.D. thesis, Computer Science Department, University of
Edinburgh, 2000

http://www.javasoft.com/apis
http://www.cs.nott.ac.uk/~azt/daidalos/docs/design.html

Bibliography 234

TS00 Tsintsifas A., Symeonidis P., The CM Marking System Design
Document, Technical Documentation, Computer Science Department,
University of Nottingham, January, 2000, Available from
www.cs.nott.ac.uk/CM/docs/marking/index.html

Ts90 Tanimoto S., VIVA: a visual language for image processing, Journal of
Visual Languages, Computing, Issue 2, June, 1990, Pages 127-139

TS99 Tsintsifas A., Symeonidis P., The CourseMaster Design Document,
Technical Documentation, Computer Science Department, University of
Nottingham, January 2000, Available from
www.cs.nott.ac.uk/CM/docs/design.html

UML97 The UML Group, Unified Modelling Language, version 1.0, Rational
Software Corporation, Santa Clara, CA-95051, USA, January 1997

UML99 Rational Corporation, UML documentation, version 1.3, Available from
www.rational.com/uml/

Up02 Uportal Group, Java in Administration Special Interest Group, 2002,
Available from www.ja-sig.org

Va94 Vladimirescu A., The SPICE Book, John Wiley, New York, 1994

Vb98 Venners B., Inside the Java Virtual Machine, McGraw-Hill, 1998

Vg95 G. Viehstaedt, A Generator for Diagram Editors, Ph.d. thesis, University
of Erlangen-Nürnberg, Band 28, Number 2, 1995

Vj80 Venn J., On the diagrammatic and mechanical representation of
propositions and reasonings, Philosophy Magazine, 1880, Volume 123

Vj90 Vlissides J. Generalized Graphical Object Editing, Ph.D. thesis, Stanford
University, 1990

Vj98 Vlissides J., Pattern Hatching: Design Patterns Applied, Reading,
Addison-Wesley, Massachusetts, 1998

VKC96 Vlissides J., Kerth N., Coplien J., (editors), Pattern Languages of
Program Design, Volume 2, Addison-Wesley, Reading, Massachusetts,
1996

VL89 Vlissides J., Linton M., Unidraw: A Framework for Building Domain-
Specific Graphical Editors, Technical Report CSL-TR-89-380, Stanford
University, July 1989

Vp85 Verth, P., A System for Automatically Grading Program Quality,
Technical Report, Buffalo, 1985

http://www.cs.nott.ac.uk/CM/docs/marking/index.html
http://www.cs.nott.ac.uk/CM/docs/design.html

Bibliography 235

WG95 Weinand A., Gamma E., ET++, A Portable Homogeneous Class Library
and Application Framework, In Lewis T., Object Oriented Application
Frameworks, Manning Publications Co., 1995, Chapter 7, Page 154-194

WH99 Whittington D., Hunt H., Approaches to the computerized assessment
of free text responses, Proceedings of the 3rd Annual Computer
Assessment (CAA) Conference, Loughborough, UK, June 16-17, 1999

WJ90 Wirfs-Brock R., Johnson R., Surveying current research in object-
oriented design, Communications of the ACM, Volume 33, 1990, Pages
104–124

Wr01 Williams R., Automated essay grading: An evaluation of four
conceptual models, In Herrmann A. and Kulski M. (Editors), Expanding
Horizons in Teaching and Learning, Proceedings of the 10th Annual
Teaching Learning Forum, Perth, Curtin University of Technology,
February 7-9, 2001

Wr98 Wieringa R., A survey of structured and object-oriented software
specification methods and techniques, ACM Computing Surveys,
Volume 30, Issue 4, 1998, Pages 459-527

WRS90 Wilson D., Rosenstein L., Shafer D., Programming with MacApp,
Addison-Wesley, Reading, Massachusetts, 1990

Wt79 Winograd T., Beyond programming languages, Communications of the
ACM, Volume 22, Number 7, July, 1979, Pages 391-401

WWW90 Wirfs-Brock R., Wilkerson B., Wiener L., Designing Object-Oriented
Software, Prentice Hall, New Jersey, 1990, ISBN 0-13-629825-7

ZF91 Zin A. M., Foxley E., Automatic Program Quality Assessment System,
Proceedings of the IFIP Conference on Software Quality, SP University,
Vidyanagar, India, 1991

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1,�Introducing Diagram-Based CBA
	Introduction
	1.1 Background
	1.1.1 Motivation
	1.1.2 Scope

	1.2 Brief Overview
	1.2.1 General Objectives
	1.2.2 Problems and Specific Objectives
	1.2.3 Approach
	1.2.4 Contributions

	1.3 Synopsis of the Dissertation
	Chapter 2, �Automated Assessment, Diagrams, and Software Engineering
	Introduction
	2.1 Learning Technology and Computer Based Assessment
	2.1.1 Automating the Assessment
	2.1.1.1 Brief Historical Overview
	2.1.1.2 Motivation and Directions in CBA
	2.1.1.3 A Pedagogic View of Assessment
	2.1.1.4 Automatic Assessment: Advantages and Limitations
	2.1.1.5 Summary

	2.1.2 A Taxonomy for CBA
	2.1.3 Fixed Response Automatic Assessment
	2.1.3.1 Multiple Choice Questions
	2.1.3.2 Simple Text or Numeric Answer Questions
	2.1.3.3 Hotspot Graphical Questions

	2.1.4 Free Response Automatic Assessment
	2.1.4.1 Programming
	2.1.4.2 Essay Exercises
	2.1.4.3 Diagrams and Graphics

	2.1.5 Summary

	2.2 Diagrams and Learning
	2.2.1 Diagrams
	2.2.2 A Short History of Diagrams
	2.2.3 Research and Use of Diagrams Across Disciplines
	2.2.4 Diagram Taxonomies
	2.2.5 Using Diagrams for Education
	2.2.6 Summary

	2.3 Software Engineering
	2.4 Summary
	Chapter 3, �Existing work: Ceilidh and Diagram Editors
	Introduction
	3.1 The Ceilidh CBA System
	3.1.1 Ceilidh’s Development History
	3.1.2 Courses in Ceilidh
	3.1.3 Ceilidh’s Functionality and Users
	3.1.4 Ceilidh’s Architecture and User-Interfaces
	3.1.5 Automatic Assessment in Ceilidh
	3.1.6 Assessing Programming Coursework
	3.1.6.1 Dynamic Metric Tools
	3.1.6.2 Static Metric Tools

	3.1.7 Administration and Management in Ceilidh
	3.1.8 Experience Using Ceilidh
	3.1.9 Summary

	3.2 Diagram Editors
	3.2.1 History of Diagram Editors
	3.2.2 Bitmap, Vector and Object Based Graphical Editors
	3.2.3 Problems in the Development of Diagram Editors
	3.2.4 Approaches in Developing Diagram Editors
	3.2.2.1 Multi Domain Diagram Editors
	3.2.2.2 Frameworks for Diagram Editors
	3.2.2.3 Diagram Editor Generators

	3.2.4 Summary

	3.3 Summary
	Chapter 4, �Identifying Diagram-Based CBA
	Introduction
	4.1 Defining Diagram-Based CBA
	4.1.1 Definitions
	4.1.2 Aims and Motivation
	4.1.3 Summary

	4.2 The Problem of Developing Diagram-Based CBA
	4.2.1. The Student Diagram Editor
	4.2.2. The Marking of Student Diagrams
	4.2.3 Integrating Diagram-Based Assessment into CBA
	4.2.4 Summary

	4.3 Detailed Requirements
	4.3.1 Feasibility
	4.3.1.1 Requirements for Solving the Problem of Customising the Diagram Editor
	4.3.1.2 Requirements for the Marking of the Diagrams
	4.3.1.3 Requirements for Integrating Diagram-Based Assessment with CBA

	4.3.2 Usefulness

	4.4 Summary
	Chapter 5,�Design,
	Introduction
	5.1 Design Objectives and Requirements
	5.1.1 The Student Diagram Editor
	5.1.2 The Generic Marking Mechanism
	5.1.3 Integration with CBA

	5.2 A High Level View of the Overall Plan
	5.3 The Design of the DATsys Framework
	5.3.1 Commonality and Variation Amongst Diagram Editors
	5.3.2 Key Abstractions
	5.3.3 Figures
	5.3.4 Tools
	5.3.5 Commands
	5.3.6 Handles
	5.3.7 Connectivity
	5.3.8 Daidalos, the Environment for Authoring Diagram Notations
	5.3.9 Ariadne, the Environment for Authoring Exercises
	5.3.10 Theseus, the Student Diagram Editor
	5.3.10 Summary

	5.4 The Design of the Generic Marking System
	5.4.1 Key Abstractions
	5.4.2 Marking Scheme
	5.4.2 Marking Result
	5.4.3 Marking Tools
	5.4.4 Configuration of Marking Tools
	5.4.5 Summary

	5.5 The Design of the CourseMaster CBA System
	5.5.1 Key Abstractions
	5.5.2 Login Server
	5.5.3 Course Server
	5.5.4 Submission Server
	5.5.5 Archiving Server
	5.5.6 Auditing Server
	5.5.7 Integrating CourseMaster with DATsys and the Marking System
	5.5.8 Summary

	5.6 Summary
	Chapter 6, �Implementation
	Introduction
	6.1 Objectives
	6.2 Requirements
	6.2.1 Functionality
	6.2.2 Usability and Usefulness
	6.2.3 Software Quality

	6.3 Implementation Overview
	6.3.1 Choosing Java as the Implementation Language
	6.3.2 High Level View of the Implemented Parts
	6.3.3 High Level View of the Relationships between Parts

	6.4 The Implementation of DATsys
	6.4.1 Daidalos
	6.4.3 Ariadne
	6.4.4 Theseus

	6.5 The Implementation of the Generic Marking System
	6.5.1 Marking Scheme
	6.5.2 Diagram-Based Marking Tools
	6.5.3 Marking Feedback

	6.6 The Implementation of the CourseMaster CBA System
	6.6.1 CourseMaster Servers
	6.6.2 CourseMaster Clients
	6.6.3 Integration with Diagram-Based CBA

	6.7 Summary
	Chapter 7,�Use and Evaluation
	Introduction
	7.1 Objectives
	7.2 Examples of Diagram-Based CBA exercises
	7.2.2 Logic Design Coursework
	7.2.2.1 Developing the Logic Design Exercises
	7.2.2.2 Use and Evaluation of the Logic Design Exercises

	7.2.3 Flowcharts
	7.2.3.1 Developing the Flowchart Exercise
	7.2.3.2 Use and Evaluation of the Flowchart Exercise

	7.2.4 Object-Oriented Design
	7.2.4.1 Developing the Object-Oriented Design Exercise
	7.2.4.2 Use and Evaluation of the Object-Oriented Design Exercise

	7.2.5 Exercises in Other Diagram Notations
	7.2.6 Summary

	7.3 Evaluation of DATsys
	7.4 Evaluation of the Generic Marking Mechanism
	7.5 Evaluation of CourseMaster
	7.5.1 Timeline Highlights
	7.5.2. Available Courses
	7.5.3 Academic Institutions and CourseMaster
	7.5.4 User Evaluation
	7.5.5 Improvements over Ceilidh
	7.5.5.1 Maintainability
	7.5.5.2 Extensibility
	7.5.5.3 Performance and Scalability
	7.5.5.4 Usability
	7.5.5.5 Security
	7.5.5.6 Plagiarism Detection
	7.5.5.7 Administration
	7.5.5.8 User Evaluation

	7.6 Evaluation of Diagram-Based CBA with CourseMaster
	7.6.1 Practical Benefits
	7.6.2 Pedagogic Benefits

	7.7 Summary
	Chapter 8,�Conclusions
	Conclusions
	8.1 Meeting the Objectives
	8.1.1 Customisable Student Diagram Editor
	8.1.2 The Generic Marking System and Marking of Diagrams
	8.1.3 Integration with CourseMaster

	8.2 Contributions
	8.2.1 CBA
	8.2.2 Diagramming

	8.3 Future Work
	8.3.1 CBA
	8.3.2 Diagramming
	8.3.3 Software Engineering

	8.4 Epilogue
	Bibliography

